Suppr超能文献

基于层次模型的头颈部放射治疗计划自动轮廓勾画中的目标定位

Hierarchical model-based object localization for auto-contouring in head and neck radiation therapy planning.

作者信息

Tong Yubing, Udupa Jayaram K, Wu Xingyu, Odhner Dewey, Pednekar Gargi, Simone Charles B, McLaughlin David, Apinorasethkul Chavanon, Shammo Geraldine, James Paul, Camaratta Joseph, Torigian Drew A

机构信息

Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States.

Quantitative Radiology Solutions, 3624 Market Street, Suite 5E, Philadelphia, PA 19104, United States.

出版信息

Proc SPIE Int Soc Opt Eng. 2018 Feb;10578. doi: 10.1117/12.2294042. Epub 2018 Mar 12.

Abstract

Segmentation of organs at risk (OARs) is a key step during the radiation therapy (RT) treatment planning process. Automatic anatomy recognition (AAR) is a recently developed body-wide multiple object segmentation approach, where segmentation is designed as two dichotomous steps: object recognition (or localization) and object delineation. Recognition is the high-level process of determining the whereabouts of an object, and delineation is the meticulous low-level process of precisely indicating the space occupied by an object. This study focuses on recognition. The purpose of this paper is to introduce new features of the AAR-recognition approach (abbreviated as AAR-R from now on) of combining texture and intensity information into the recognition procedure, using the optimal spanning tree to achieve the optimal hierarchy for recognition to minimize recognition errors, and to illustrate recognition performance by using large-scale testing computed tomography (CT) data sets. The data sets pertain to 216 non-serial (planning) and 82 serial (re-planning) studies of head and neck (H&N) cancer patients undergoing radiation therapy, involving a total of 2600 object samples. Texture property "maximum probability of occurrence" derived from the co-occurrence matrix was determined to be the best property and is utilized in conjunction with intensity properties in AAR-R. An optimal spanning tree is found in the complete graph whose nodes are individual objects, and then the tree is used as the hierarchy in recognition. Texture information combined with intensity can significantly reduce location error for gland-related objects (parotid and submandibular glands). We also report recognition results by considering image quality, which is a novel concept. AAR-R with new features achieves a location error of less than 4 mm (1.5 voxels in our studies) for good quality images for both serial and non-serial studies.

摘要

危及器官(OARs)的分割是放射治疗(RT)治疗计划过程中的关键步骤。自动解剖识别(AAR)是一种最近开发的全身多目标分割方法,其中分割被设计为两个二分步骤:目标识别(或定位)和目标描绘。识别是确定物体位置的高级过程,而描绘是精确指示物体所占空间的细致低级过程。本研究聚焦于识别。本文的目的是介绍AAR识别方法(以下简称为AAR-R)的新特性,即将纹理和强度信息结合到识别过程中,使用最优生成树实现识别的最优层次结构以最小化识别误差,并通过使用大规模测试计算机断层扫描(CT)数据集来说明识别性能。这些数据集涉及216例非序列(计划)和82例序列(重新计划)的头颈部(H&N)癌症放疗患者研究,总共涉及约2600个目标样本。从共生矩阵导出 的纹理属性“最大出现概率”被确定为最佳属性,并在AAR-R中与强度属性结合使用。在以单个对象为节点的完全图中找到一棵最优生成树,然后将该树用作识别中的层次结构。纹理信息与强度相结合可以显著降低与腺体相关对象(腮腺和颌下腺)的定位误差。我们还通过考虑图像质量报告识别结果,这是一个新概念。具有新特性的AAR-R对于序列和非序列研究中的高质量图像实现了小于4毫米(在我们的研究中约为1.5体素)的定位误差。

相似文献

1
Hierarchical model-based object localization for auto-contouring in head and neck radiation therapy planning.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10578. doi: 10.1117/12.2294042. Epub 2018 Mar 12.
3
Auto-contouring via Automatic Anatomy Recognition of Organs at Risk in Head and Neck Cancer on CT images.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10576. doi: 10.1117/12.2293946. Epub 2018 Mar 13.
4
Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images.
Med Image Anal. 2014 Jul;18(5):752-71. doi: 10.1016/j.media.2014.04.003. Epub 2014 Apr 24.
5
Automatic anatomy recognition in whole-body PET/CT images.
Med Phys. 2016 Jan;43(1):613. doi: 10.1118/1.4939127.
7
Object recognition in medical images via anatomy-guided deep learning.
Med Image Anal. 2022 Oct;81:102527. doi: 10.1016/j.media.2022.102527. Epub 2022 Jun 25.
8
Quantification of body-torso-wide tissue composition on low-dose CT images via automatic anatomy recognition.
Med Phys. 2019 Mar;46(3):1272-1285. doi: 10.1002/mp.13373. Epub 2019 Feb 5.
9
Disease quantification on PET/CT images without explicit object delineation.
Med Image Anal. 2019 Jan;51:169-183. doi: 10.1016/j.media.2018.11.002. Epub 2018 Nov 10.

引用本文的文献

1
Automatic Segmentation of Mandible from Conventional Methods to Deep Learning-A Review.
J Pers Med. 2021 Jul 1;11(7):629. doi: 10.3390/jpm11070629.
2
Auto-contouring via Automatic Anatomy Recognition of Organs at Risk in Head and Neck Cancer on CT images.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10576. doi: 10.1117/12.2293946. Epub 2018 Mar 13.
3
Image Quality and Segmentation.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10576. doi: 10.1117/12.2293622. Epub 2018 Mar 13.

本文引用的文献

1
Toward robust adaptive radiation therapy strategies.
Med Phys. 2017 Jun;44(6):2054-2065. doi: 10.1002/mp.12226. Epub 2017 Jun 1.
2
Evaluation of segmentation methods on head and neck CT: Auto-segmentation challenge 2015.
Med Phys. 2017 May;44(5):2020-2036. doi: 10.1002/mp.12197. Epub 2017 Apr 21.
3
Automatic anatomy recognition in whole-body PET/CT images.
Med Phys. 2016 Jan;43(1):613. doi: 10.1118/1.4939127.
4
Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images.
Med Image Anal. 2014 Jul;18(5):752-71. doi: 10.1016/j.media.2014.04.003. Epub 2014 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验