Skin and Cancer Foundation, Melbourne, Australia.
Dermatology Research Centre, Diamantina Institute, University of Queensland, Brisbane, Australia.
PLoS One. 2018 Sep 7;13(9):e0203459. doi: 10.1371/journal.pone.0203459. eCollection 2018.
An automated melanocytic lesion image-analysis algorithm is described that aims to reproduce the decision-making of a dermatologist. The utility of the algorithm lies in its ability to identify lesions requiring excision from lesions not requiring excision. Using only wavelet coefficients as features, and testing three different machine learning algorithms, a cohort of 250 images of pigmented lesions is classified based on expert dermatologists' recommendations of either excision (165 images) or no excision (85 images). It is shown that the best algorithm utilises the Shannon4 wavelet coupled to the support vector machine, where the latter is used as the classifier. In this case the algorithm, utilising only 22 othogonal features, achieves a 10-fold cross validation sensitivity and specificity of 0.96 and 0.87, resulting in a diagnostic-odds ratio of 261. The advantages of this method over diagnostic algorithms-which make a melanoma/no melanoma decision-are twofold: first, by reproducing the decision-making of a dermatologist, the average number of lesions excised per melanoma among practioners in general can be reduced without compromising the detection of melanoma; and second, the intractable problem of clinically differentiating between many atypical dysplastic naevi and melanoma is avoided. Since many atypical naevi that require excision on clinical grounds will not be melanoma, the algorithm-in contrast to diagnostic algorithms-can aim for perfect specificities without clinical concerns, thus lowering the excision rate of non-melanoma. Finally, the algorithm has been implemented as a smart phone application to investigate its utility in clinical practice and to streamline the assimilation of hitherto unseen tested images into the training set.
描述了一种自动黑素细胞病变图像分析算法,旨在复制皮肤科医生的决策过程。该算法的实用性在于能够识别需要切除的病变和不需要切除的病变。该算法仅使用小波系数作为特征,并测试了三种不同的机器学习算法,根据专家皮肤科医生的建议,对 250 张色素病变图像进行分类,这些建议要么是切除(165 张图像),要么是不切除(85 张图像)。结果表明,最好的算法利用了 Shannon4 小波和支持向量机,后者被用作分类器。在这种情况下,该算法仅使用 22 个正交特征,实现了 10 倍交叉验证的敏感性和特异性分别为 0.96 和 0.87,诊断优势比为 261。与仅做出黑色素瘤/非黑色素瘤决策的诊断算法相比,该方法具有两个优势:首先,通过复制皮肤科医生的决策过程,可以在不影响黑色素瘤检测的情况下,减少一般实践中每个黑色素瘤切除的病变数量;其次,避免了临床区分许多非典型发育不良痣和黑色素瘤的棘手问题。由于许多需要切除的非典型痣在临床上并不是黑色素瘤,因此该算法——与诊断算法不同——可以在不考虑临床因素的情况下追求完美的特异性,从而降低非黑色素瘤的切除率。最后,该算法已被实现为一个智能手机应用程序,以调查其在临床实践中的实用性,并简化将迄今为止未见的测试图像纳入训练集的过程。