Kluge Felix, Hannink Julius, Pasluosta Cristian, Klucken Jochen, Gaßner Heiko, Gelse Kolja, Eskofier Bjoern M, Krinner Sebastian
Machine Learning and Data Analytics Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Carl-Thiersch-Str. 2b, 91052 Erlangen, Germany.
Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany.
Gait Posture. 2018 Oct;66:194-200. doi: 10.1016/j.gaitpost.2018.08.026. Epub 2018 Aug 24.
Despite the general success of total knee arthroplasty (TKA) regarding patient-reported outcome measures, studies investigating gait function have shown diverse functional outcomes. Mobile sensor-based systems have recently been employed for accurate clinical gait assessments, as they allow a better integration of gait analysis into clinical routines as compared to laboratory based systems.
In this study, we sought to examine whether an accurate assessment of gait function of knee osteoarthritis patients with respect to surgery outcome evaluation after TKA using a mobile sensor-based gait analysis system is possible.
A foot-worn sensor-based system was used to assess spatio-temporal gait parameters of 24 knee osteoarthritis patients one day before and one year after TKA, and in comparison to matched control participants. Patients were clustered into positive and negative responder groups using a heuristic approach regarding improvements in gait function. Machine learning was used to predict surgery outcome based on pre-operative gait parameters.
Gait function differed significantly between controls and patients. Patient-reported outcome measures improved significantly after surgery, but no significant global gait parameter difference was observed between pre- and post-operative status. However, the responder groups could be correctly predicted with an accuracy of up to 89% using pre-operative gait parameters. Patients exhibiting high pre-operative gait function were more likely to experience a functional decrease after surgery. Important gait parameters for the discrimination were stride time and stride length.
The early identification of post-surgical functional outcomes of patients is of great importance to better inform patients pre-operatively regarding surgery success and to improve post-surgical management.
尽管全膝关节置换术(TKA)在患者报告的结局指标方面总体取得了成功,但研究步态功能的研究显示了不同的功能结果。基于移动传感器的系统最近已被用于准确的临床步态评估,因为与基于实验室的系统相比,它们能更好地将步态分析整合到临床常规中。
在本研究中,我们试图探讨是否可以使用基于移动传感器的步态分析系统准确评估膝关节骨关节炎患者在TKA术后的手术结局评估方面的步态功能。
使用基于足部穿戴传感器的系统评估24名膝关节骨关节炎患者在TKA术前一天和术后一年的时空步态参数,并与匹配的对照参与者进行比较。根据步态功能的改善情况,采用启发式方法将患者分为阳性和阴性反应组。使用机器学习基于术前步态参数预测手术结局。
对照组和患者之间的步态功能存在显著差异。患者报告的结局指标在术后有显著改善,但术前和术后状态之间未观察到显著的整体步态参数差异。然而,使用术前步态参数可以正确预测反应组,准确率高达89%。术前步态功能高的患者术后功能下降的可能性更大。用于区分的重要步态参数是步幅时间和步幅长度。
早期识别患者的术后功能结局对于在术前更好地告知患者手术成功率以及改善术后管理非常重要。