Suppr超能文献

面向工业物联网数据驱动型产品开发的稳健预测性能分析方法

A Robust Predicted Performance Analysis Approach for Data-Driven Product Development in the Industrial Internet of Things.

机构信息

State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.

出版信息

Sensors (Basel). 2018 Aug 31;18(9):2871. doi: 10.3390/s18092871.

Abstract

Industrial Internet of Things (IoT) is a ubiquitous network integrating various sensing technologies and communication technologies to provide intelligent information processing and smart control abilities for the manufacturing enterprises. The aim of applying industrial IoT is to assist manufacturers manage and optimize the entire product manufacturing process to improve product quality and production efficiency. Data-driven product development is considered as one of the critical application scenarios of industrial IoT, which is used to acquire the satisfied and robust design solution according to customer demands. Performance analysis is an effective tool to identify whether the key performance have reached the requirements in data-driven product development. The existing performance analysis approaches mainly focus on the metamodel construction, however, the uncertainty and complexity in product development process are rarely considered. In response, this paper investigates a robust performance analysis approach in industrial IoT environment to help product developers forecast the performance parameters accurately. The service-oriented layered architecture of industrial IoT for product development is first described. Then a dimension reduction approach based on mutual information (MI) and outlier detection is proposed. A metamodel based on least squares support vector regression (LSSVR) is established to conduct performance prediction process. Furthermore, the predicted performance analysis method based on confidence interval estimation is developed to deal with the uncertainty to improve the robustness of the forecasting results. Finally, a case study is given to show the feasibility and effectiveness of the proposed approach.

摘要

工业物联网(IoT)是一个无处不在的网络,集成了各种传感技术和通信技术,为制造企业提供智能信息处理和智能控制能力。应用工业物联网的目的是帮助制造商管理和优化整个产品制造过程,以提高产品质量和生产效率。数据驱动的产品开发被认为是工业物联网的关键应用场景之一,它用于根据客户需求获取满意和稳健的设计解决方案。性能分析是在数据驱动的产品开发中识别关键性能是否达到要求的有效工具。现有的性能分析方法主要集中在元模型构建上,但是很少考虑产品开发过程中的不确定性和复杂性。针对这一问题,本文研究了一种工业物联网环境下的稳健性能分析方法,以帮助产品开发人员准确预测性能参数。首先描述了面向服务的工业物联网产品开发分层架构。然后提出了一种基于互信息(MI)和异常值检测的降维方法。建立了基于最小二乘支持向量回归(LSSVR)的元模型来进行性能预测过程。此外,还开发了基于置信区间估计的预测性能分析方法来处理不确定性,以提高预测结果的稳健性。最后,通过一个案例研究展示了所提出方法的可行性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29b8/6164570/e6d4deb8c0a4/sensors-18-02871-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验