Suppr超能文献

基于模式模拟和星载对流层 NO₂柱的下风羽流的欧洲城市自上而下的 NO 排放。

Top-Down NO Emissions of European Cities Based on the Downwind Plume of Modelled and Space-Borne Tropospheric NO₂ Columns.

机构信息

Royal Meteorological Institute of Belgium (RMI), Ukkel, B-1180 Brussels, Belgium.

Royal Netherlands Meteorological Institute (KNMI), 3731 GA De Bilt, The Netherlands.

出版信息

Sensors (Basel). 2018 Aug 31;18(9):2893. doi: 10.3390/s18092893.

Abstract

Top-down estimates of surface NO emissions were derived for 23 European cities based on the downwind plume decay of tropospheric nitrogen dioxide (NO₂) columns from the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) chemistry transport model (CTM) and from Ozone Monitoring Instrument (OMI) satellite retrievals, averaged for the summertime period (April⁻September) during 2013. Here we show that the top-down NO emissions derived from LOTOS-EUROS for European urban areas agree well with the bottom-up NO emissions from the MACC-III inventory data (R² = 0.88) driving the CTM demonstrating the potential of this method. OMI top-down NO emissions over the 23 European cities are generally lower compared with the MACC-III emissions and their correlation is slightly lower (R² = 0.79). The uncertainty on the derived NO₂ lifetimes and NO emissions are on average ~55% for OMI and ~63% for LOTOS-EUROS data. The downwind NO₂ plume method applied on both LOTOS-EUROS and OMI tropospheric NO₂ columns allows to estimate NO emissions from urban areas, demonstrating that this is a useful method for real-time updates of urban NO emissions with reasonable accuracy.

摘要

基于 LOTOS-EUROS(长期臭氧模拟-欧洲臭氧模拟)化学传输模型(CTM)下风羽中对流层二氧化氮(NO₂)柱的下风向羽衰减以及 Ozone Monitoring Instrument(OMI)卫星反演,对 23 个欧洲城市的地表 NO 排放进行了自上而下的估算,平均时间为 2013 年夏季(4 月至 9 月)。结果表明,LOTOS-EUROS 自下而上估算的欧洲城市地区的 NO 排放与 CTM 中 MACC-III 清单数据(R² = 0.88)驱动的 NO 排放吻合较好,这表明了该方法的潜力。与 MACC-III 排放相比,23 个欧洲城市的 OMI 自上而下的 NO 排放通常较低,其相关性略低(R² = 0.79)。OMI 和 LOTOS-EUROS 数据的衍生 NO₂寿命和 NO 排放的不确定性平均分别约为 55%和 63%。应用于 LOTOS-EUROS 和 OMI 对流层 NO₂柱的下风羽 NO₂方法可用于估算城市地区的 NO 排放,表明这是一种用于实时更新城市 NO 排放的有用方法,具有合理的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d6/6164929/67a9ef9fdccf/sensors-18-02893-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验