Travis Katherine R, Jacob Daniel J, Fisher Jenny A, Kim Patrick S, Marais Eloise A, Zhu Lei, Yu Karen, Miller Christopher C, Yantosca Robert M, Sulprizio Melissa P, Thompson Anne M, Wennberg Paul O, Crounse John D, St Clair Jason M, Cohen Ronald C, Laughner Joshua L, Dibb Jack E, Hall Samuel R, Ullmann Kirk, Wolfe Glenn M, Pollack Illana B, Peischl Jeff, Neuman Jonathan A, Zhou Xianliang
Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
Atmos Chem Phys. 2016;16(21):13561-13577. doi: 10.5194/acp-16-13561-2016. Epub 2016 Nov 1.
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NO ≡ NO + NO) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEACRS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NO from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEACRS observations of NO and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO columns. Our results indicate that NEI NO emissions from mobile and industrial sources must be reduced by 30-60%, dependent on the assumption of the contribution by soil NO emissions. Upper tropospheric NO from lightning makes a large contribution to satellite observations of tropospheric NO that must be accounted for when using these data to estimate surface NO emissions. We find that only half of isoprene oxidation proceeds by the high-NO pathway to produce ozone; this fraction is only moderately sensitive to changes in NO emissions because isoprene and NO emissions are spatially segregated. GEOS-Chem with reduced NO emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NO oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.
美国东南部的臭氧污染涉及由人为氮氧化物自由基(NO≡NO + NO)排放和生物源异戊二烯驱动的复杂化学过程。该地区地表臭氧浓度的模型估计往往偏高,这对于设计有效的排放控制策略以达到空气质量标准而言令人担忧。我们利用2013年8月和9月SEACRS飞机观测活动中的详细化学观测数据,并结合水平分辨率为0.25°×0.3125°的GEOS-Chem化学传输模型进行解读,以更好地了解控制美国东南部地表臭氧的因素。我们发现美国环境保护局(EPA)的国家氮氧化物排放清单(NEI)过高。这一发现基于SEACRS对氮氧化物及其氧化产物的观测、硝酸盐湿沉降通量的地表网络观测以及对流层氮氧化物柱的OMI卫星观测。我们的结果表明,移动源和工业源的NEI氮氧化物排放必须减少30% - 60%,具体取决于土壤氮氧化物排放贡献的假设。闪电产生的对流层上部氮氧化物对对流层氮氧化物的卫星观测贡献很大,在利用这些数据估算地表氮氧化物排放时必须予以考虑。我们发现,只有一半的异戊二烯氧化通过高氮氧化物途径进行以产生臭氧;这一比例对氮氧化物排放变化的敏感度较低,因为异戊二烯和氮氧化物排放存在空间隔离。降低氮氧化物排放后的GEOS-Chem对飞机观测的臭氧数据进行了无偏差模拟,并再现了从臭氧和氮氧化物氧化产物回归得出的边界层观测到的臭氧生成效率。然而,相对于美国东南部观测到的地表臭氧,该模型仍偏高8±13 ppb。午间发射的臭氧探空仪显示,从1.5千米到地表臭氧减少了7 ppb,而GEOS-Chem未能捕捉到这一变化。这种偏差可能反映了模型边界层中过度的垂直混合和净臭氧生成的综合影响。