Suppr超能文献

将眼动追踪与头部运动预测集成到移动设备认证中:概念验证。

Integrating Gaze Tracking and Head-Motion Prediction for Mobile Device Authentication: A Proof of Concept.

机构信息

School of Cyber Engineering, Xidian University, Xi'an 710071, China.

Shaanxi Key Laboratory of Network and System Security, Xidian University, Xi'an 710071, China.

出版信息

Sensors (Basel). 2018 Aug 31;18(9):2894. doi: 10.3390/s18092894.

Abstract

We introduce a two-stream model to use reflexive eye movements for smart mobile device authentication. Our model is based on two pre-trained neural networks, and , targeting two independent tasks: (i) gaze tracking and (ii) future frame prediction. We design a procedure to randomly generate the visual stimulus on the screen of mobile device, and the frontal camera will simultaneously capture head motions of the user as one watches it. Then, calculates the gaze-coordinates error which is treated as a . To solve the imprecise gaze-coordinates caused by the low resolution of the frontal camera, we further take advantage of to extract the between consecutive frames. In order to resist traditional attacks (shoulder surfing and impersonation attacks) during the procedure of mobile device authentication, we innovatively combine and to train a 2-class support vector machine (SVM) classifier. The experiment results show that the classifier achieves accuracy of 98.6% to authenticate the user identity of mobile devices.

摘要

我们提出了一种双流模型,利用反射性眼球运动进行智能移动设备认证。我们的模型基于两个预先训练的神经网络和,针对两个独立的任务:(i)注视跟踪和(ii)未来帧预测。我们设计了一个程序,在移动设备的屏幕上随机生成视觉刺激,而前置摄像头将同时捕捉用户的头部运动,以便观看。然后,计算注视坐标误差,将其视为。为了解决由于前置摄像头分辨率低而导致的不精确注视坐标问题,我们进一步利用来提取连续帧之间的。为了抵抗移动设备认证过程中的传统攻击(肩窥和冒充攻击),我们创新性地结合和来训练一个 2 类支持向量机(SVM)分类器。实验结果表明,该分类器在认证移动设备用户身份方面的准确率达到了 98.6%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00ce/6164076/1fd4cbba5896/sensors-18-02894-g0A1.jpg

相似文献

2
Gaze Tracking and Point Estimation Using Low-Cost Head-Mounted Devices.
Sensors (Basel). 2020 Mar 30;20(7):1917. doi: 10.3390/s20071917.
4
Novel eye gaze tracking techniques under natural head movement.
IEEE Trans Biomed Eng. 2007 Dec;54(12):2246-60. doi: 10.1109/tbme.2007.895750.
6
An Effective Gaze-Based Authentication Method with the Spatiotemporal Feature of Eye Movement.
Sensors (Basel). 2022 Apr 14;22(8):3002. doi: 10.3390/s22083002.
7
Enhancement of the vestibulo-ocular reflex by prior eye movements.
J Neurophysiol. 1999 Jun;81(6):2884-92. doi: 10.1152/jn.1999.81.6.2884.
8
Tracking gaze while walking on a treadmill: spatial accuracy and limits of use of a stationary remote eye-tracker.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3727-30. doi: 10.1109/EMBC.2014.6944433.
10
Gaze estimation interpolation methods based on binocular data.
IEEE Trans Biomed Eng. 2012 Aug;59(8):2235-2243. doi: 10.1109/TBME.2012.2201716. Epub 2012 May 30.

引用本文的文献

1
Generative model-enhanced human motion prediction.
Appl AI Lett. 2022 Apr;3(2):e63. doi: 10.1002/ail2.63. Epub 2022 Mar 23.

本文引用的文献

2
Matching Contactless and Contact-based Conventional Fingerprint Images for Biometrics Identification.
IEEE Trans Image Process. 2018 Apr;27(4):2008-2021. doi: 10.1109/TIP.2017.2788866. Epub 2018 Jan 1.
3
State-of-the-art in visual attention modeling.
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):185-207. doi: 10.1109/TPAMI.2012.89.
4
In the eye of the beholder: a survey of models for eyes and gaze.
IEEE Trans Pattern Anal Mach Intell. 2010 Mar;32(3):478-500. doi: 10.1109/TPAMI.2009.30.
5
Speed and accuracy of saccadic eye movements: characteristics of impulse variability in the oculomotor system.
J Exp Psychol Hum Percept Perform. 1989 Aug;15(3):529-43. doi: 10.1037//0096-1523.15.3.529.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验