Jiang Xiangjun, Huang Jin, Wang Yongkun, Li Baotong, Du Jingli, Hao Peng
Key Laboratory of Electronic Equipment Structural Design, Xidian University, Xi'an 710071, China.
State Key Laboratory for Manufacturing System, Xi'an Jiaotong University, Xi'an 710049, China.
Materials (Basel). 2018 Sep 2;11(9):1592. doi: 10.3390/ma11091592.
A macroscopic constitutive model is proposed in this research to reproduce the uniaxial transition ratcheting behaviors of the superelastic shape memory alloy (SMA) undergoing cyclic loading, based on the cosine-type phase transition equation with the initial martensite evolution coefficient that provides the predictive residual martensite accumulation evolution and the nonlinear feature of hysteresis loop. The calculated results are compared with the experimental results to show the validity of the present computational procedure in transition ratcheting. Finite element implementation for the self-loosening behavior of the superelastic SMA bolt is then carried out based on the proposed constitutive model to analyze the curves of stress-strain responses on the bolt bar, clamping force reduction law, dissipation energy change law of the bolted joint for different external loading cases, and preload force of the bolt.
本研究提出了一种宏观本构模型,基于具有初始马氏体演化系数的余弦型相变方程,该方程能预测残余马氏体累积演化和滞后回线的非线性特征,以再现超弹性形状记忆合金(SMA)在循环加载下的单轴过渡棘轮行为。将计算结果与实验结果进行比较,以表明当前计算程序在过渡棘轮方面的有效性。然后基于所提出的本构模型对超弹性SMA螺栓的自松动行为进行有限元实现,以分析不同外部加载情况下螺栓杆上的应力 - 应变响应曲线、夹紧力降低规律、螺栓连接的耗散能量变化规律以及螺栓的预紧力。