Department of Telecommunications and Information Processing, Ghent University, St-Pietersnieuwstraat 41, B-9000 Ghent, Belgium.
ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Electricidad y Computación, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, EC090112 Guayaquil, Ecuador.
Sensors (Basel). 2018 Sep 6;18(9):2972. doi: 10.3390/s18092972.
Understanding tourism related behavior and traveling patterns is an essential element of transportation system planning and tourism management at tourism destinations. Traditionally, tourism market segmentation is conducted to recognize tourist's profiles for which personalized services can be provided. Today, the availability of wearable sensors, such as smartphones, holds the potential to tackle data collection problems of paper-based surveys and deliver relevant mobility data in a timely and cost-effective way. In this paper, we develop and implement a hierarchical clustering approach for smartphone geo-localized data to detect meaningful tourism related market segments. For these segments, we provide detailed insights into their characteristics and related mobility behavior. The applicability of the proposed approach is demonstrated on a use case in the Province of Zeeland in the Netherlands. We collected data from 1505 users during five months using the Zeeland app. The proposed approach resulted in two major clusters and four sub-clusters which we were able to interpret based on their spatio-temporal patterns and the recurrence of their visiting patterns to the region.
了解与旅游相关的行为和旅行模式是旅游目的地交通系统规划和旅游管理的重要组成部分。传统上,旅游市场细分是为了识别游客的特征,以便为其提供个性化服务。如今,可穿戴传感器(如智能手机)的普及有潜力解决基于纸质的调查中的数据收集问题,并以及时且具有成本效益的方式提供相关的移动性数据。在本文中,我们开发并实施了一种用于智能手机地理定位数据的层次聚类方法,以检测有意义的旅游相关市场细分。对于这些细分市场,我们提供了有关其特征和相关移动性行为的详细见解。在荷兰泽兰省的一个用例中,演示了该方法的适用性。我们使用 Zeeland 应用程序在五个月内从 1505 位用户那里收集了数据。该方法产生了两个主要集群和四个子集群,我们可以根据它们的时空模式和对该地区的访问模式的重现来解释这些集群。