Schrader Juan, Pinedo Lloy, Vargas Franz, Martell Karla, Seijas-Díaz José, Rengifo-Amasifen Roger, Cueto-Orbe Rosa, Torres-Silva Cinthya
Grupo de Investigación Innovación Turística y Comercio Exterior, Facultad de Ciencias Económicas, Administrativas y Contables, Universidad Nacional Autónoma de Alto Amazonas, Yurimaguas, Peru.
Grupo de Investigación Transformación Digital Empresarial, Facultad de Ingeniería y Negocios, Universidad Privada Norbert Wiener, Lima, Peru.
Front Artif Intell. 2025 Aug 4;8:1632415. doi: 10.3389/frai.2025.1632415. eCollection 2025.
Tourism in Peru represents an opportunity for local development; however, there is limited understanding of visitor profiles. The aim of this study was to characterize tourists using machine learning techniques in order to identify distinct segments that can inform planning and promotional strategies for the Alto Amazonas destination. The research followed the CRISP-DM methodology for data analysis, based on surveys administered to 882 visitors. The data were processed using the clustering algorithms K-Means, DBSCAN, HDBSCAN, and Agglomerative, with Principal Component Analysis applied beforehand for dimensionality reduction. The results showed that the Agglomerative Clustering model achieved the best performance in internal validation metrics, allowing for the identification of five distinct visitor profiles. These segments provide valuable insights for the design of more inclusive and personalized tourism products. In conclusion, the study demonstrates the value of machine learning as a tool for tourism segmentation, offering empirical evidence that can strengthen the management of emerging destinations such as Alto Amazonas. The practical contribution of this study lies in providing strategic information that enables destination managers to tailor services and experiences to the characteristics of each segment, thereby optimizing visitor satisfaction and strengthening the destination's competitiveness.
秘鲁的旅游业是当地发展的一个机遇;然而,对游客特征的了解有限。本研究的目的是使用机器学习技术对游客进行特征描述,以识别不同的细分群体,为上亚马逊地区目的地的规划和推广策略提供参考。该研究遵循CRISP-DM数据分析方法,基于对882名游客进行的调查。数据使用聚类算法K-Means、DBSCAN、HDBSCAN和凝聚聚类进行处理,事先应用主成分分析进行降维。结果表明,凝聚聚类模型在内部验证指标方面表现最佳,能够识别出五个不同的游客特征。这些细分群体为设计更具包容性和个性化的旅游产品提供了有价值的见解。总之,该研究证明了机器学习作为旅游细分工具的价值,提供了实证证据,可加强对上亚马逊等新兴目的地的管理。本研究的实际贡献在于提供战略信息,使目的地管理者能够根据每个细分群体的特征量身定制服务和体验,从而优化游客满意度并增强目的地的竞争力。