Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany.
Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany.
Biosens Bioelectron. 2019 Jan 1;123:185-194. doi: 10.1016/j.bios.2018.08.049. Epub 2018 Aug 23.
In today's development of anticancer drugs, there is an enormous demand for sensitive, non-invasive real-time screening technologies to identify pharmacodynamics/-kinetics of single and combined drugs with high precision. The combination of sophisticated drug sensitivity testing with advanced in vitro tumor models reflecting heterogeneous tumor behavior in vivo is needed to more reasonably predict therapeutic outcome in vivo. In this study, the benefits of our real-time, non-invasive multidimensional impedance platform over standard in vitro drug sensitivity assays were demonstrated quantitatively using an advanced melanoma model. Detailed pharmacological profiles of clinically established targeted therapeutics in single and combination treatment have been identified in patient tissue and isolated 2D/3D cell line cultures. Impedance spectroscopy revealed significant differences in tissue structure responsible for BRAF inhibitor pharmacokinetics in BRAF tumor microfragments and cell lines. Remarkably, BRAF-/MEK inhibitor combination treatment of direct patient-derived tissue, but not melanoma cell lines, resulted in short-term antagonistic effects consistent with in vivo findings. In contrast, the clinically validated resistance delay and thus long-term synergy of targeted therapeutics in advanced melanoma models has been demonstrated using impedance technology. The results demonstrate limited clinical transferability of 2D/3D cancer cell line-based chemosensitivity data and underline the importance of in vivo-like direct patient-derived tissue for predictive drug studies. Our non-invasive and highly sensitive multidimensional impedance platform offers great potential for quantifying short- and long-term drug kinetics and synergies to identify the most effective drug combinations in advanced cancer models, thereby improving personalized drug development and treatment planning and ultimately, overall patient outcomes.
在当今抗癌药物的发展中,人们对敏感、非侵入性的实时筛选技术有巨大的需求,这些技术可用于精确识别单药和联合用药的药效动力学/-动力学。需要将复杂的药物敏感性测试与先进的体外肿瘤模型相结合,以反映体内异质肿瘤行为,从而更合理地预测体内治疗效果。在这项研究中,我们使用先进的黑色素瘤模型,定量证明了实时、非侵入性多维阻抗平台相对于标准体外药物敏感性测定的优势。已经在患者组织和分离的 2D/3D 细胞系培养物中确定了临床应用的靶向治疗药物的详细药理学特征。在 BRAF 肿瘤微片段和细胞系中,阻抗谱揭示了导致 BRAF 抑制剂药代动力学的组织结构的显著差异。值得注意的是,BRAF-/MEK 抑制剂联合治疗直接来源于患者的组织,而不是黑色素瘤细胞系,导致了与体内发现一致的短期拮抗作用。相比之下,使用阻抗技术已经证明了靶向治疗药物在晚期黑色素瘤模型中的临床验证的耐药延迟和长期协同作用。结果表明,基于 2D/3D 癌细胞系的化疗敏感性数据的临床转化能力有限,并强调了体内样直接来源于患者的组织对于预测性药物研究的重要性。我们的非侵入性和高灵敏度多维阻抗平台具有很大的潜力,可用于定量测定短期和长期药物动力学和协同作用,以确定在先进的癌症模型中最有效的药物组合,从而改善个性化药物开发和治疗计划,并最终改善整体患者预后。