Department of Physiology and Biophysics, and.
Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045.
J Neurosci. 2018 Oct 24;38(43):9215-9227. doi: 10.1523/JNEUROSCI.0695-18.2018. Epub 2018 Sep 10.
Stac protein (named for its SH3- and cysteine-rich domains) was first identified in brain 20 years ago and is currently known to have three isoforms. Stac2, Stac1, and Stac3 transcripts are found at high, modest, and very low levels, respectively, in the cerebellum and forebrain, but their neuronal functions have been little investigated. Here, we tested the effects of Stac proteins on neuronal, high-voltage-activated Ca channels. Overexpression of the three Stac isoforms eliminated Ca-dependent inactivation (CDI) of l-type current in rat neonatal hippocampal neurons (sex unknown), but not CDI of non-l-type current. Using heterologous expression in tsA201 cells (together with β and α-δ auxiliary subunits), we found that CDI for Ca1.2 and Ca1.3 (the predominant, neuronal l-type Ca channels) was suppressed by all three Stac isoforms, whereas CDI for the P/Q channel, Ca2.1, was not. For Ca1.2, the inhibition of CDI by the Stac proteins appeared to involve their direct interaction with the channel's C terminus. Within the Stac proteins, a weakly conserved segment containing ∼100 residues and linking the structurally conserved PKC C1 and SH3_1 domains was sufficient to fully suppress CDI. The presence of CDI for l-type current in control neonatal neurons raised the possibility that endogenous Stac levels are low in these neurons and Western blotting indicated that the expression of Stac2 was substantially increased in adult forebrain and cerebellum compared with neonate. Together, our results indicate that one likely function of neuronal Stac proteins is to tune Ca entry via neuronal l-type channels. Stac protein, first identified 20 years ago in brain, has recently been found to be essential for proper trafficking and function of the skeletal muscle l-type Ca2+ channel and is the site of mutations causing a severe, inherited human myopathy. In neurons, however, functions for Stac protein have remained unexplored. Here, we report that one likely function of neuronal Stac proteins is tuning Ca2+ entry via l-type, but not that via non-l-type, Ca2+ channels. Moreover, there is a large postnatal increase in protein levels of the major neuronal isoform (Stac2) in forebrain and cerebellum, which could provide developmental regulation of l-type channel Ca2+ signaling in these brain regions.
Stac 蛋白(因其富含 SH3 和半胱氨酸的结构域而得名)在 20 年前首次在大脑中被发现,目前已知有三种同工型。Stac2、Stac1 和 Stac3 转录本在小脑和前脑中的水平分别很高、适中、非常低,但它们的神经元功能尚未得到深入研究。在这里,我们测试了 Stac 蛋白对神经元、高电压激活钙通道的影响。三种 Stac 同工型的过表达消除了大鼠新生海马神经元(性别未知)中 l 型电流的钙依赖性失活(CDI),但不消除非 l 型电流的 CDI。使用 tsA201 细胞中的异源表达(与β和α-δ辅助亚基一起),我们发现三种 Stac 同工型均抑制 Ca1.2 和 Ca1.3(主要的神经元 l 型钙通道)的 CDI,而 P/Q 通道 Ca2.1 的 CDI不受抑制。对于 Ca1.2,Stac 蛋白对 CDI 的抑制似乎涉及它们与通道 C 端的直接相互作用。在 Stac 蛋白内,一个包含约 100 个残基的弱保守片段,连接结构保守的 PKC C1 和 SH3_1 结构域,足以完全抑制 CDI。在对照新生神经元中存在 l 型电流的 CDI 这一事实表明,这些神经元中内源性 Stac 水平较低,Western 印迹分析表明,Stac2 在成年前脑和小脑中的表达明显高于新生。总的来说,我们的结果表明,神经元 Stac 蛋白的一个可能功能是调节通过神经元 l 型通道的钙内流。Stac 蛋白在 20 年前在大脑中首次被发现,最近发现它对骨骼肌 l 型钙通道的正确运输和功能至关重要,并且是导致严重遗传性人类肌病的突变部位。然而,在神经元中,Stac 蛋白的功能仍然未知。在这里,我们报告说,神经元 Stac 蛋白的一个可能功能是调节通过 l 型而不是非 l 型钙通道的钙内流。此外,在大脑前区和小脑中有大量的主要神经元同工型(Stac2)的蛋白质水平在出生后增加,这可能为这些脑区的 l 型通道钙信号的发育调节提供了可能。