Suppr超能文献

基于胆固醇修饰的抗菌肽(DP7)的新型自组装胶束,用于细菌感染动物模型的安全有效全身给药。

Novel Self-Assembled Micelles Based on Cholesterol-Modified Antimicrobial Peptide (DP7) for Safe and Effective Systemic Administration in Animal Models of Bacterial Infection.

机构信息

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan, China.

Collaborative Innovation Center, Chengdu, Sichuan, China.

出版信息

Antimicrob Agents Chemother. 2018 Oct 24;62(11). doi: 10.1128/AAC.00368-18. Print 2018 Nov.

Abstract

Owing to their broad-spectrum antibacterial properties, multitarget effects, and low drug resistance, antimicrobial peptides (AMPs) have played critical roles in the clinical therapy of drug-resistant bacterial infections. However, the potential hazard of hemolysis following systemic administration has greatly limited their application. Here, we developed a novel AMP derivative, DP7-C, by modifying a formerly identified highly active AMP (DP7) with cholesterol to form an amphiphilic conjugate. The prepared DP7-C easily self-assembled into stable nanomicelles in aqueous solution. The DP7-C micelles showed lower hemolytic activity than their unconjugated counterparts toward human red blood cells and a maximum tolerated dose of 80 mg/kg of body weight in mice via intravenous injection, thus demonstrating improved safety. Moreover, by eliciting specific immunomodulatory activities in immune cells, the DP7-C micelles exerted distinct therapeutic effects in zebrafish and mouse models of infection. In conclusion, DP7-C micelles may be an excellent candidate for the treatment of bacterial infections in the clinic.

摘要

由于其广谱抗菌特性、多靶点效应和低耐药性,抗菌肽(AMPs)在治疗耐药细菌感染的临床治疗中发挥了关键作用。然而,全身给药后潜在的溶血危险极大地限制了它们的应用。在这里,我们通过用胆固醇修饰以前鉴定的一种高活性 AMP(DP7)来制备一种新型 AMP 衍生物 DP7-C,形成两亲性缀合物。所制备的 DP7-C 很容易在水溶液中自组装成稳定的纳米胶束。与未缀合的 DP7-C 相比,DP7-C 胶束对人红细胞的溶血活性较低,并且通过静脉注射在小鼠中具有 80mg/kg 体重的最大耐受剂量,从而表现出更好的安全性。此外,通过在免疫细胞中引发特定的免疫调节活性,DP7-C 胶束在感染的斑马鱼和小鼠模型中发挥了明显的治疗作用。总之,DP7-C 胶束可能是临床治疗细菌感染的优秀候选药物。

相似文献

2
Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria.
Drug Des Devel Ther. 2017 Mar 22;11:939-946. doi: 10.2147/DDDT.S107195. eCollection 2017.
3
Imaging and Targeted Antibacterial Therapy Using Chimeric Antimicrobial Peptide Micelles.
ACS Appl Mater Interfaces. 2020 Dec 9;12(49):54306-54315. doi: 10.1021/acsami.0c13083. Epub 2020 Nov 25.
5
In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method.
Antimicrob Agents Chemother. 2014 Sep;58(9):5342-9. doi: 10.1128/AAC.02823-14. Epub 2014 Jun 30.
6
Effective antimicrobial activity of a peptide mutant Cbf-14-2 against penicillin-resistant bacteria based on its unnatural amino acids.
Eur J Pharm Sci. 2017 Jul 15;105:169-177. doi: 10.1016/j.ejps.2017.05.030. Epub 2017 May 15.
7
Self-Assembly of Antimicrobial Peptide-Based Micelles Breaks the Limitation of Trypsin.
ACS Appl Mater Interfaces. 2023 Jan 11;15(1):494-510. doi: 10.1021/acsami.2c17941. Epub 2022 Dec 28.
8
Polyion complexes of a cationic antimicrobial peptide as a potential systemically administered antibiotic.
Int J Pharm. 2019 Jan 10;554:284-291. doi: 10.1016/j.ijpharm.2018.11.029. Epub 2018 Nov 13.
9
K1K8: an Hp1404-derived antibacterial peptide.
Appl Microbiol Biotechnol. 2016 Jun;100(11):5069-77. doi: 10.1007/s00253-016-7395-x. Epub 2016 Mar 8.
10
Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity.
Colloids Surf B Biointerfaces. 2017 May 1;153:152-159. doi: 10.1016/j.colsurfb.2017.02.003. Epub 2017 Feb 13.

引用本文的文献

1
Polymer Micelles as Nanocarriers of Bioactive Peptides.
Polymers (Basel). 2025 Apr 25;17(9):1174. doi: 10.3390/polym17091174.
2
A Novel Systemic siDR6 Delivery System Based on DP7-C for the Treatment of Metastatic Lung Cancer.
Int J Nanomedicine. 2025 Mar 19;20:3623-3642. doi: 10.2147/IJN.S488213. eCollection 2025.
3
Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines.
Signal Transduct Target Ther. 2025 Mar 10;10(1):73. doi: 10.1038/s41392-024-02112-8.
4
The utilization of nanotechnology in the female reproductive system and related disorders.
Heliyon. 2024 Feb 1;10(3):e25477. doi: 10.1016/j.heliyon.2024.e25477. eCollection 2024 Feb 15.
5
Efficient Synergistic Antibacterial Activity of α-MSH Using Chitosan-Based Versatile Nanoconjugates.
ACS Omega. 2023 Mar 30;8(14):12865-12877. doi: 10.1021/acsomega.2c08209. eCollection 2023 Apr 11.
6
Advanced delivery systems for peptide antibiotics.
Adv Drug Deliv Rev. 2023 May;196:114733. doi: 10.1016/j.addr.2023.114733. Epub 2023 Feb 17.
7
Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment.
Arch Pharm Res. 2022 Dec;45(12):865-893. doi: 10.1007/s12272-022-01418-x. Epub 2022 Nov 24.
8
Engineering neoantigen vaccines to improve cancer personalized immunotherapy.
Int J Biol Sci. 2022 Sep 1;18(15):5607-5623. doi: 10.7150/ijbs.76281. eCollection 2022.
10
The Potential of Modified and Multimeric Antimicrobial Peptide Materials as Superbug Killers.
Front Chem. 2022 Jan 10;9:795433. doi: 10.3389/fchem.2021.795433. eCollection 2021.

本文引用的文献

2
An overview of antimicrobial peptides and the latest advances in their development.
Expert Opin Biol Ther. 2017 Jun;17(6):663-676. doi: 10.1080/14712598.2017.1315402. Epub 2017 Apr 11.
3
Antimicrobial Peptides: An Emerging Category of Therapeutic Agents.
Front Cell Infect Microbiol. 2016 Dec 27;6:194. doi: 10.3389/fcimb.2016.00194. eCollection 2016.
4
Novel antimicrobial peptide-modified azithromycin-loaded liposomes against methicillin-resistant .
Int J Nanomedicine. 2016 Dec 14;11:6781-6794. doi: 10.2147/IJN.S107107. eCollection 2016.
7
Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials.
Adv Drug Deliv Rev. 2016 Nov 15;106(Pt B):223-241. doi: 10.1016/j.addr.2016.02.004. Epub 2016 Feb 24.
8
Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli.
PLoS One. 2016 Jan 25;11(1):e0146552. doi: 10.1371/journal.pone.0146552. eCollection 2016.
9
The stereochemical effect of SMAP-29 and SMAP-18 on bacterial selectivity, membrane interaction and anti-inflammatory activity.
Amino Acids. 2016 May;48(5):1241-51. doi: 10.1007/s00726-016-2170-y. Epub 2016 Jan 21.
10
Access to effective antimicrobials: a worldwide challenge.
Lancet. 2016 Jan 9;387(10014):168-75. doi: 10.1016/S0140-6736(15)00474-2. Epub 2015 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验