Badwe N, Chen X, Schreiber D K, Olszta M J, Overman N R, Karasz E K, Tse A Y, Bruemmer S M, Sieradzki K
Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona, USA.
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
Nat Mater. 2018 Oct;17(10):887-893. doi: 10.1038/s41563-018-0162-x. Epub 2018 Sep 10.
Intergranular stress-corrosion cracking (IGSCC) is a form of environmentally induced crack propagation causing premature failure of elemental metals and alloys. It is believed to require the simultaneous presence of tensile stress and corrosion; however, the exact nature of this synergy has eluded experimental identification. For noble metal alloys such as Ag-Au, IGSCC is a consequence of dealloying corrosion, forming a nanoporous gold layer that is believed to have the ability to transmit cracks into grain boundaries in un-dealloyed parent phase via a pure mechanical process. Here using atomic-scale techniques and statistical characterizations for this alloy system, we show that the separate roles of stress and anodic dissolution can be decoupled and that the apparent synergy exists owing to rapid time-dependent morphology changes at the dealloyed layer/parent phase interface. We discuss the applicability of our findings to the IGSCC of important engineering Fe- and Ni-based alloys in critical applications.
晶间应力腐蚀开裂(IGSCC)是环境诱导裂纹扩展的一种形式,会导致金属单质和合金过早失效。人们认为它需要拉应力和腐蚀同时存在;然而,这种协同作用的确切性质尚未通过实验确定。对于诸如银 - 金之类的贵金属合金,IGSCC是脱合金腐蚀的结果,会形成纳米多孔金层,据信该层能够通过纯机械过程将裂纹传播到未脱合金的母相晶界中。在此,我们使用该合金体系的原子尺度技术和统计表征方法,表明应力和阳极溶解的各自作用可以解耦,并且由于脱合金层/母相界面处随时间快速变化的形貌,才出现了明显的协同作用。我们讨论了我们的研究结果在关键应用中对重要工程铁基和镍基合金的IGSCC的适用性。