Torresan Veronica, Forrer Daniel, Guadagnini Andrea, Badocco Denis, Pastore Paolo, Casarin Maurizio, Selloni Annabella, Coral Diego, Ceolin Marcelo, Fernández van Raap Marcela B, Busato Alice, Marzola Pasquina, Spinelli Antonello E, Amendola Vincenzo
Department of Chemical Sciences, University of Padova, Padova, I-35131 Italy.
CNR-ICMATE, Padova, I-35131 Italy.
ACS Nano. 2020 Oct 27;14(10):12840-12853. doi: 10.1021/acsnano.0c03614. Epub 2020 Sep 15.
Several examples of nanosized therapeutic and imaging agents have been proposed to date, yet for most of them there is a low chance of clinical translation due to long-term retention and toxicity risks. The realization of nanoagents that can be removed from the body after use remains thus a great challenge. Here, we demonstrate that nonequilibrium gold-iron alloys behave as shape-morphing nanocrystals with the properties of self-degradable multifunctional nanomedicines. DFT calculations combined with mixing enthalpy-weighted alloying simulations predict that Au-Fe solid solutions can exhibit self-degradation in an aqueous environment if the Fe content exceeds a threshold that depends upon element topology in the nanocrystals. Exploiting a laser-assisted synthesis route, we experimentally confirm that nonequilibrium Au-Fe nanoalloys have a 4D behavior, that is, the ability to change shape, size, and structure over time, becoming ultrasmall Au-rich nanocrystals. tests show the potential of these transformable Au-Fe nanoalloys as efficient multimodal contrast agents for magnetic resonance imaging and computed X-ray absorption tomography and further demonstrate their self-degradation over time, with a significant reduction of long-term accumulation in the body, when compared to benchmark gold or iron oxide contrast agents. Hence, Au-Fe alloy nanoparticles exhibiting 4D behavior can respond to the need for safe and degradable inorganic multifunctional nanomedicines required in clinical translation.
迄今为止,已经提出了几种纳米级治疗和成像剂的例子,但由于长期留存和毒性风险,它们中的大多数进入临床应用的可能性较低。因此,实现使用后能够从体内清除的纳米制剂仍然是一个巨大的挑战。在这里,我们证明非平衡金铁合金表现为形状可变的纳米晶体,具有可自降解的多功能纳米药物的特性。密度泛函理论计算与混合焓加权合金化模拟相结合预测,如果铁含量超过取决于纳米晶体中元素拓扑结构的阈值,金铁固溶体在水性环境中可表现出自降解。利用激光辅助合成路线,我们通过实验证实非平衡金铁纳米合金具有四维行为,即随时间改变形状、尺寸和结构的能力,变成超小的富金纳米晶体。测试表明这些可转化的金铁纳米合金作为磁共振成像和计算机X射线吸收断层扫描的高效多模态造影剂的潜力,并进一步证明与基准金或氧化铁造影剂相比,它们随时间的自降解以及在体内长期积累的显著减少。因此,表现出四维行为的金铁合金纳米颗粒能够满足临床转化中对安全且可降解的无机多功能纳米药物的需求。
ACS Nano. 2020-10-27
Acc Chem Res. 2011-6-10
Nanomaterials (Basel). 2023-11-29
Chemphyschem. 2024-11-18
Beilstein J Nanotechnol. 2024-6-5
Nanomaterials (Basel). 2023-11-29
Nanomaterials (Basel). 2023-5-23
J Phys Chem Lett. 2023-4-27
Nanomaterials (Basel). 2023-2-17
Nanomaterials (Basel). 2022-12-21
Proc Natl Acad Sci U S A. 2019-12-18
Nature. 2019-11-6
Chem Soc Rev. 2019-10-28
Adv Sci (Weinh). 2019-5-2
Nat Nanotechnol. 2019-7-15