Suppr超能文献

通过控制相组成实现混合相 BiFeO3 中的巨阻开关效应。

Giant resistive switching in mixed phase BiFeOvia phase population control.

机构信息

School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK.

Microelectronics-Photonics Program and Physics Department, University of Arkansas, Fayetteville, Arkansas 72701, USA.

出版信息

Nanoscale. 2018 Sep 27;10(37):17629-17637. doi: 10.1039/c8nr03653e.

Abstract

Highly-strained coherent interfaces, between rhombohedral-like (R) and tetragonal-like (T) phases in BiFeO3 thin films, often show enhanced electrical conductivity in comparison to non-interfacial regions. In principle, changing the population and distribution of these interfaces should therefore allow different resistance states to be created. However, doing this controllably has been challenging to date. Here, we show that local thin film phase microstructures (and hence R-T interface densities) can be changed in a thermodynamically predictable way (predictions made using atomistic simulations) by applying different combinations of mechanical stress and electric field. We use both pressure and electric field to reversibly generate metastable changes in microstructure that result in very large changes of resistance of up to 108%, comparable to those seen in Tunnelling Electro-Resistance (TER) devices.

摘要

在 BiFeO3 薄膜中,菱面体 (R) 和四方体 (T) 相之间的高度应变相干界面通常比非界面区域表现出更高的电导率。原则上,改变这些界面的数量和分布应该可以创建不同的电阻状态。然而,迄今为止,要做到这一点具有挑战性。在这里,我们表明,通过施加不同的机械应力和电场组合,可以以热力学上可预测的方式(使用原子模拟做出的预测)改变局部薄膜相微结构(因此 R-T 界面密度)。我们同时使用压力和电场来可逆地产生微观结构的亚稳变化,导致电阻发生非常大的变化,最大可达 108%,与隧道电子电阻 (TER) 器件中观察到的变化相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验