Suppr超能文献

追踪错误:不确定性可视化评估调查

In Pursuit of Error: A Survey of Uncertainty Visualization Evaluation.

作者信息

Hullman Jessica, Qiao Xiaoli, Correll Michael, Kale Alex, Kay Matthew

出版信息

IEEE Trans Vis Comput Graph. 2018 Sep 10. doi: 10.1109/TVCG.2018.2864889.

Abstract

Understanding and accounting for uncertainty is critical to effectively reasoning about visualized data. However, evaluating the impact of an uncertainty visualization is complex due to the difficulties that people have interpreting uncertainty and the challenge of defining correct behavior with uncertainty information. Currently, evaluators of uncertainty visualization must rely on general purpose visualization evaluation frameworks which can be ill-equipped to provide guidance with the unique difficulties of assessing judgments under uncertainty. To help evaluators navigate these complexities, we present a taxonomy for characterizing decisions made in designing an evaluation of an uncertainty visualization. Our taxonomy differentiates six levels of decisions that comprise an uncertainty visualization evaluation: the behavioral targets of the study, expected effects from an uncertainty visualization, evaluation goals, measures, elicitation techniques, and analysis approaches. Applying our taxonomy to 86 user studies of uncertainty visualizations, we find that existing evaluation practice, particularly in visualization research, focuses on Performance and Satisfaction-based measures that assume more predictable and statistically-driven judgment behavior than is suggested by research on human judgment and decision making. We reflect on common themes in evaluation practice concerning the interpretation and semantics of uncertainty, the use of confidence reporting, and a bias toward evaluating performance as accuracy rather than decision quality. We conclude with a concrete set of recommendations for evaluators designed to reduce the mismatch between the conceptualization of uncertainty in visualization versus other fields.

摘要

理解并考虑不确定性对于有效推理可视化数据至关重要。然而,评估不确定性可视化的影响很复杂,这是因为人们在解释不确定性方面存在困难,以及在利用不确定性信息定义正确行为方面面临挑战。目前,不确定性可视化的评估者必须依赖通用的可视化评估框架,而这些框架可能无法很好地应对在不确定性下评估判断的独特困难并提供指导。为了帮助评估者应对这些复杂性,我们提出了一种分类法,用于描述在设计不确定性可视化评估时所做的决策。我们的分类法区分了构成不确定性可视化评估的六个决策层次:研究的行为目标、不确定性可视化的预期效果、评估目标、度量、引出技术和分析方法。将我们的分类法应用于86项不确定性可视化的用户研究中,我们发现现有的评估实践,尤其是在可视化研究中,侧重于基于性能和满意度的度量,这些度量所假设的判断行为比人类判断和决策研究表明的更具可预测性和统计驱动性。我们思考了评估实践中关于不确定性的解释和语义、置信度报告的使用以及倾向于将性能评估为准确性而非决策质量的常见主题。我们最后为评估者提出了一套具体建议,旨在减少可视化中不确定性概念化与其他领域之间的不匹配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验