Suppr超能文献

电子共振受激拉曼散射微光谱学。

Electronic Resonant Stimulated Raman Scattering Micro-Spectroscopy.

机构信息

Department of Chemistry , Columbia University , New York , New York 10027 , United States.

出版信息

J Phys Chem B. 2018 Oct 4;122(39):9218-9224. doi: 10.1021/acs.jpcb.8b07037. Epub 2018 Sep 24.

Abstract

Recently we have reported electronic pre-resonance stimulated Raman scattering (epr-SRS) microscopy as a powerful technique for super-multiplex imaging ( Wei, L. ; Nature 2017 , 544 , 465 - 470 ). However, under rigorous electronic resonance, background signal, which mainly originates from pump-probe process, overwhelms the desired vibrational signature of the chromophores. Here we demonstrate electronic resonant stimulated Raman scattering (er-SRS) microspectroscopy and imaging through suppression of electronic background and subsequent retrieval of vibrational peaks. We observed a change of the vibrational band shapes from normal Lorentzian, through dispersive shapes, to inverted Lorentzian as the electronic resonance was approached, in agreement with theoretical prediction. In addition, resonant Raman cross sections have been determined after power-dependence study as well as Raman excitation profile calculation. As large as 10 cm of resonance Raman cross section is estimated in er-SRS, which is about 100 times higher than previously reported in epr-SRS. These results of er-SRS microspectroscopy pave the way for the single-molecule Raman detection and ultrasensitive biological imaging.

摘要

最近,我们报道了电子预共振受激拉曼散射(epr-SRS)显微镜作为一种强大的超多重成像技术(Wei,L.;自然,2017,544,465-470)。然而,在严格的电子共振下,背景信号主要来源于泵浦探测过程,压倒了发色团所需的振动特征。在这里,我们通过抑制电子背景并随后检索振动峰来演示电子共振受激拉曼散射(er-SRS)显微光谱学和成像。我们观察到,随着电子共振的接近,振动带形状从正常的洛伦兹形状,经过色散形状,变为倒的洛伦兹形状,这与理论预测一致。此外,我们还通过功率依赖性研究和拉曼激发轮廓计算确定了共振拉曼截面。在 er-SRS 中估计的共振拉曼截面高达 10 cm,比以前在 epr-SRS 中报道的要高 100 倍。这些 er-SRS 显微光谱学的结果为单分子拉曼检测和超高灵敏度生物成像铺平了道路。

相似文献

1
Electronic Resonant Stimulated Raman Scattering Micro-Spectroscopy.
J Phys Chem B. 2018 Oct 4;122(39):9218-9224. doi: 10.1021/acs.jpcb.8b07037. Epub 2018 Sep 24.
2
Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
Acc Chem Res. 2014 Aug 19;47(8):2282-90. doi: 10.1021/ar400331q. Epub 2014 May 28.
3
9-Cyanopyronin probe palette for super-multiplexed vibrational imaging.
Nat Commun. 2021 Jul 26;12(1):4518. doi: 10.1038/s41467-021-24855-6.
4
Selective photo-excitation of molecules enabled by stimulated Raman pre-excitation.
Phys Chem Chem Phys. 2022 May 4;24(17):10062-10068. doi: 10.1039/d2cp00868h.
5
Multiplex Raman induced Kerr effect microscopy.
Opt Express. 2012 Jan 16;20(2):835-44. doi: 10.1364/OE.20.000835.
7
Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity.
Nat Commun. 2019 Nov 21;10(1):5318. doi: 10.1038/s41467-019-13230-1.
9
Spatial light-modulated stimulated Raman scattering (SLM-SRS) microscopy for rapid multiplexed vibrational imaging.
Theranostics. 2020 Jan 1;10(1):312-322. doi: 10.7150/thno.38551. eCollection 2020.
10
Super-Resolution Vibrational Imaging Using Expansion Stimulated Raman Scattering Microscopy.
Adv Sci (Weinh). 2022 Jul;9(20):e2200315. doi: 10.1002/advs.202200315. Epub 2022 May 6.

引用本文的文献

1
Principle of Stimulated Raman Scattering Microscopy: Emerging at High Spatiotemporal Limits.
J Phys Chem C Nanomater Interfaces. 2025 Mar 27;129(12):5789-5797. doi: 10.1021/acs.jpcc.5c00655. Epub 2025 Mar 13.
2
To label or not: the need for validation in label-free imaging.
J Biomed Opt. 2024 Jun;29(Suppl 2):S22717. doi: 10.1117/1.JBO.29.S2.S22717. Epub 2024 Dec 20.
3
Absolute signal of stimulated Raman scattering microscopy: A quantum electrodynamics treatment.
Sci Adv. 2024 Dec 13;10(50):eadm8424. doi: 10.1126/sciadv.adm8424. Epub 2024 Dec 11.
4
Raman Spectroscopy for the Quantitative Analysis of Solid Dosage Forms of the Active Pharmaceutical Ingredient of Febuxostat.
ACS Omega. 2023 Oct 27;8(44):41451-41457. doi: 10.1021/acsomega.3c05243. eCollection 2023 Nov 7.
6
Super-multiplexed vibrational probes: Being colorful makes a difference.
Curr Opin Chem Biol. 2022 Apr;67:102115. doi: 10.1016/j.cbpa.2021.102115. Epub 2022 Jan 22.
7
Coherent Raman scattering microscopy: capable solution in search of a larger audience.
J Biomed Opt. 2021 Jun;26(6). doi: 10.1117/1.JBO.26.6.060601.
8
Ultrasensitive Vibrational Imaging of Retinoids by Visible Preresonance Stimulated Raman Scattering Microscopy.
Adv Sci (Weinh). 2021 Feb 8;8(9):2003136. doi: 10.1002/advs.202003136. eCollection 2021 May.
9
Toward photoswitchable electronic pre-resonance stimulated Raman probes.
J Chem Phys. 2021 Apr 7;154(13):135102. doi: 10.1063/5.0043791.

本文引用的文献

1
Electronic Preresonance Stimulated Raman Scattering Microscopy.
J Phys Chem Lett. 2018 Aug 2;9(15):4294-4301. doi: 10.1021/acs.jpclett.8b00204. Epub 2018 Jul 24.
2
Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4465-4470. doi: 10.1073/pnas.1718917115. Epub 2018 Apr 6.
3
Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
Chem Rev. 2017 Jun 14;117(11):7583-7613. doi: 10.1021/acs.chemrev.6b00552. Epub 2016 Dec 8.
4
Super-multiplex vibrational imaging.
Nature. 2017 Apr 27;544(7651):465-470. doi: 10.1038/nature22051. Epub 2017 Apr 19.
5
Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy at 1 MHz Repetition Rates.
J Phys Chem Lett. 2016 Nov 17;7(22):4629-4634. doi: 10.1021/acs.jpclett.6b02175. Epub 2016 Nov 4.
6
Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.
J Chem Phys. 2016 Sep 7;145(9):094106. doi: 10.1063/1.4961749.
7
Invited Review Article: Pump-probe microscopy.
Rev Sci Instrum. 2016 Mar;87(3):031101. doi: 10.1063/1.4943211.
9
Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
Acc Chem Res. 2014 Aug 19;47(8):2282-90. doi: 10.1021/ar400331q. Epub 2014 May 28.
10
Multicolor live-cell chemical imaging by isotopically edited alkyne vibrational palette.
J Am Chem Soc. 2014 Jun 4;136(22):8027-33. doi: 10.1021/ja502706q. Epub 2014 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验