Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139.
Edwin L. Steele Labs for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, MGH Research Institute and Harvard Medical School, Boston, MA 02114.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4465-4470. doi: 10.1073/pnas.1718917115. Epub 2018 Apr 6.
Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.
荧光成像是一种实时分子追踪的方法,已经催生了许多临床技术。与传统的可见光和近红外(NIR)荧光成像相比,短波红外(SWIR;1000-2000nm)成像有望提供更高的对比度、灵敏度和穿透深度。然而,SWIR 成像在临床环境中的应用受到限制,部分原因是缺乏经美国食品和药物管理局(FDA)批准的在 SWIR 处具有峰值发射的荧光团。在这里,我们表明,包括 FDA 批准的对比剂吲哚菁绿(ICG)在内的市售近红外染料具有适合体内 SWIR 荧光成像的光学特性。尽管它们的发射光谱在近红外处峰值,但这些染料的性能优于商业 SWIR 荧光团,甚至可以在 SWIR 中成像,甚至在 1500nm 以上。我们展示了使用 ICG 在临床相关剂量下进行实时荧光成像,包括活体显微镜、血液和淋巴管的非侵入性成像以及肝胆清除的成像,并显示出与近红外荧光成像相比对比度增加。此外,我们展示了用 IRDye 800CW 标记的曲妥珠单抗(一种正在多项临床试验中测试的近红外染料)进行的靶向肿瘤的 SWIR 成像。我们的研究结果表明,可以通过将传统 NIR 荧光系统的检测从基于硅的 NIR 摄像机切换到新兴的基于铟镓砷的 SWIR 摄像机,将高对比度的 SWIR 荧光成像与现有的成像模式结合起来。特别地使用 ICG 开辟了将 SWIR 荧光成像转化为人体临床应用的可能性。事实上,我们的研究结果表明,新兴的 SWIR 荧光体内对比剂应该在血液中的 ICG 的 SWIR 发射处进行基准测试。
Proc Natl Acad Sci U S A. 2018-4-6
ACS Appl Mater Interfaces. 2024-4-10
Proc Natl Acad Sci U S A. 2021-1-5
IEEE Trans Med Imaging. 2020-4
PLoS One. 2017-11-9
Npj Imaging. 2025-6-23
Nanomaterials (Basel). 2025-5-28
Molecules. 2025-2-14
PLoS One. 2017-11-9
Nat Biomed Eng. 2017
Nano Lett. 2017-9-27
Angew Chem Int Ed Engl. 2017-9-14
Nat Photonics. 2014-9
Proc Natl Acad Sci U S A. 2016-9-6