文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用临床批准的近红外染料吲哚菁绿的短波近红外荧光成像。

Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139.

Edwin L. Steele Labs for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, MGH Research Institute and Harvard Medical School, Boston, MA 02114.

出版信息

Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4465-4470. doi: 10.1073/pnas.1718917115. Epub 2018 Apr 6.


DOI:10.1073/pnas.1718917115
PMID:29626132
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5924901/
Abstract

Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.

摘要

荧光成像是一种实时分子追踪的方法,已经催生了许多临床技术。与传统的可见光和近红外(NIR)荧光成像相比,短波红外(SWIR;1000-2000nm)成像有望提供更高的对比度、灵敏度和穿透深度。然而,SWIR 成像在临床环境中的应用受到限制,部分原因是缺乏经美国食品和药物管理局(FDA)批准的在 SWIR 处具有峰值发射的荧光团。在这里,我们表明,包括 FDA 批准的对比剂吲哚菁绿(ICG)在内的市售近红外染料具有适合体内 SWIR 荧光成像的光学特性。尽管它们的发射光谱在近红外处峰值,但这些染料的性能优于商业 SWIR 荧光团,甚至可以在 SWIR 中成像,甚至在 1500nm 以上。我们展示了使用 ICG 在临床相关剂量下进行实时荧光成像,包括活体显微镜、血液和淋巴管的非侵入性成像以及肝胆清除的成像,并显示出与近红外荧光成像相比对比度增加。此外,我们展示了用 IRDye 800CW 标记的曲妥珠单抗(一种正在多项临床试验中测试的近红外染料)进行的靶向肿瘤的 SWIR 成像。我们的研究结果表明,可以通过将传统 NIR 荧光系统的检测从基于硅的 NIR 摄像机切换到新兴的基于铟镓砷的 SWIR 摄像机,将高对比度的 SWIR 荧光成像与现有的成像模式结合起来。特别地使用 ICG 开辟了将 SWIR 荧光成像转化为人体临床应用的可能性。事实上,我们的研究结果表明,新兴的 SWIR 荧光体内对比剂应该在血液中的 ICG 的 SWIR 发射处进行基准测试。

相似文献

[1]
Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.

Proc Natl Acad Sci U S A. 2018-4-6

[2]
Shortwave-infrared (SWIR) fluorescence molecular imaging using indocyanine green-antibody conjugates for the optical diagnostics of cancerous tumours.

RSC Adv. 2020-7-28

[3]
Dynamic multispectral NIR/SWIR for lymphovascular architectural and functional quantification.

J Biomed Opt. 2024-10

[4]
Biocompatible and Water-Soluble Shortwave-Infrared (SWIR)-Emitting Cyanine-Based Fluorescent Probes for In Vivo Multiplexed Molecular Imaging.

ACS Appl Mater Interfaces. 2024-4-10

[5]
Shortwave-Infrared Fluorescent Molecular Imaging Probes Based on π-Conjugation Extended Indocyanine Green.

Bioconjug Chem. 2021-8-18

[6]
Deep learning for in vivo near-infrared imaging.

Proc Natl Acad Sci U S A. 2021-1-5

[7]
First experience imaging short-wave infrared fluorescence in a large animal: indocyanine green angiography of a pig brain.

J Biomed Opt. 2019-8

[8]
Comparison of NIR Versus SWIR Fluorescence Image Device Performance Using Working Standards Calibrated With SI Units.

IEEE Trans Med Imaging. 2020-4

[9]
Fluorescence Imaging of Tumor-Accumulating Antibody-IR700 Conjugates Prior to Near-Infrared Photoimmunotherapy (NIR-PIT) Using a Commercially Available Camera Designed for Indocyanine Green.

Mol Pharm. 2021-3-1

[10]
Indocyanine green fluorescence in second near-infrared (NIR-II) window.

PLoS One. 2017-11-9

引用本文的文献

[1]
Reliable and Reproducible Protocol for Evaluating Detection Sensitivity in Bioimaging Systems Using Near-Infrared Fluorescent Dyes.

J Fluoresc. 2025-8-25

[2]
Near-infrared fatty acid molecular probe for image-guided surgery of glioblastoma.

Npj Imaging. 2025-6-23

[3]
Furin-Triggered Peptide Self-Assembly Activates Coumarin Excimer Fluorescence for Precision Live-Cell Imaging.

Molecules. 2025-6-4

[4]
Application of NIR Fluorescent Materials in Imaging and Treatment of Tumors of Different Depths.

Nanomaterials (Basel). 2025-5-28

[5]
Near-infrared II cyanine fluorophores with large stokes shift engineered by regulating respective absorption and emission.

Nat Commun. 2025-5-27

[6]
Image-guided targeting of mitochondrial metabolism sensitizes pediatric malignant rhabdoid tumors to low-dose radiotherapy.

Sci Adv. 2025-5-23

[7]
High-Resolution Multicolor Shortwave Infrared Dynamic Imaging with Chromenylium Nonamethine Dyes.

J Am Chem Soc. 2025-5-21

[8]
Water-Soluble Aggregation-Induced Emission Luminogens with Near-Infrared Emission for Advanced Phototheranostics.

Small Sci. 2023-7-21

[9]
Chromenylium Star Polymers: Merging Water Solubility and Stealth Properties with Shortwave Infrared Emissive Fluorophores.

ACS Cent Sci. 2024-12-21

[10]
The Medical Basis for the Photoluminescence of Indocyanine Green.

Molecules. 2025-2-14

本文引用的文献

[1]
Indocyanine green fluorescence in second near-infrared (NIR-II) window.

PLoS One. 2017-11-9

[2]
Next-generation optical imaging with short-wave infrared quantum dots.

Nat Biomed Eng. 2017

[3]
Shortwave Infrared in Vivo Imaging with Gold Nanoclusters.

Nano Lett. 2017-9-27

[4]
Flavylium Polymethine Fluorophores for Near- and Shortwave Infrared Imaging.

Angew Chem Int Ed Engl. 2017-9-14

[5]
Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries.

J Biomed Opt. 2016-12-1

[6]
Sentinel lymph node biopsy using indocyanine green fluorescence in early-stage breast cancer: a meta-analysis.

Int J Clin Oncol. 2017-2

[7]
Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared.

Nat Commun. 2016-11-11

[8]
Through-skull fluorescence imaging of the brain in a new near-infrared window.

Nat Photonics. 2014-9

[9]
Using the shortwave infrared to image middle ear pathologies.

Proc Natl Acad Sci U S A. 2016-9-6

[10]
Near-Infrared Emitting PbS Quantum Dots for in Vivo Fluorescence Imaging of the Thrombotic State in Septic Mouse Brain.

Molecules. 2016-8-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索