Università di Bologna, Dipartimento di Chimica 'G. Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy.
Phys Chem Chem Phys. 2018 Oct 7;20(37):24227-24238. doi: 10.1039/c8cp04008g. Epub 2018 Sep 13.
A peculiar characteristic of open-shell singlet diradical molecules is the presence of a double exciton state (H,H → L,L) among low lying excited states. Recent high-level quantum-chemical investigations including a static and dynamic electron correlation have demonstrated that this state can become the lowest singlet excited state, a diagnostic fingerprint of the diradical system. Here we investigate the performance of less computationally demanding TDDFT calculations by employing two approaches: the spin-flip TDDFT scheme and TD calculations based on unrestricted broken symmetry antiparallel-spin reference configuration (TDUDFT). The calculations are tested on a number of recently synthesized, large conjugated systems displaying from moderate to large diradical character and showing experimental trace of the double exciton state. We show that spin-flip (SF) TDB3LYP calculations in the collinear approximation generally underestimate the excitation energy of the double exciton state. When the molecule displays a strong diradical character, the unrestricted antiparallel-spin reference configuration of TDUDFT calculations is characterized by strongly localized frontier molecular orbitals. We show that under these conditions the double exciton state is captured by TDUB3LYP calculations since it is described by singly excited configurations and its excitation energy can be accurately predicted. Owing to the improved description of the ground state, also the excitation energy of the single exciton H → L state generally improves at the TDUB3LYP level. With regard to the double exciton state, SF TDB3LYP performs slightly better for small to medium diradical character while a large diradical character (and strong orbital localization) is a prerequisite for the success of TDUB3LYP calculations whose quality otherwise deteriorates.
开壳单重自由基分子的一个奇特特征是在低能激发态中存在双激子态(H,H→L,L)。最近的包括静态和动态电子相关的高水平量子化学研究表明,该状态可以成为最低的单重激发态,这是自由基体系的特征指纹。在这里,我们通过两种方法研究了计算要求较低的 TDDFT 计算的性能:自旋翻转 TDDFT 方案和基于非限制的broken symmetry 反平行自旋参考构型(TDUDFT)的 TD 计算。这些计算在许多最近合成的具有中等至较大自由基特征并显示双激子态实验痕迹的大共轭体系上进行了测试。我们表明,在共线近似下,自旋翻转(SF)TDB3LYP 计算通常低估了双激子态的激发能。当分子显示出强烈的自由基特征时,TDUDFT 计算的非限制反平行自旋参考构型的特点是前线分子轨道强烈局域化。我们表明,在这些条件下,双激子态由 TDUB3LYP 计算捕获,因为它由单激发构型描述,并且可以准确预测其激发能。由于对基态的描述得到改善,因此在 TDUB3LYP 水平下,单激子 H→L 态的激发能通常也会提高。对于小到中等自由基特征,SF TDB3LYP 的性能略好,而大自由基特征(和强轨道局域化)是 TDUB3LYP 计算成功的前提条件,否则其质量会恶化。