Shen Yi, Xue Guodong, Dai Yasi, Quintero Sergio Moles, Chen Hanjiao, Wang Dongsheng, Miao Fang, Negri Fabrizia, Zheng Yonghao, Casado Juan
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China.
Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126, Bologna, Italy.
Nat Commun. 2021 Oct 29;12(1):6262. doi: 10.1038/s41467-021-26368-8.
π-conjugated radicals have great promise for use in organic spintronics, however, the mechanisms of spin relaxation and mobility related to radical structural flexibility remain unexplored. Here, we describe a dumbbell shape azobenzene diradical and correlate its solid-state flexibility with spin relaxation and mobility. We employ a combination of X-ray diffraction and Raman spectroscopy to determine the molecular changes with temperature. Heating leads to: i) a modulation of the spin distribution; and ii) a "normal" quinoidal → aromatic transformation at low temperatures driven by the intramolecular rotational vibrations of the azobenzene core and a "reversed" aromatic → quinoidal change at high temperatures activated by an azobenzene bicycle pedal motion amplified by anisotropic intermolecular interactions. Thermal excitation of these vibrational states modulates the diradical electronic and spin structures featuring vibronic coupling mechanisms that might be relevant for future design of high spin organic molecules with tunable magnetic properties for solid state spintronics.
π共轭自由基在有机自旋电子学中具有巨大的应用前景,然而,与自由基结构灵活性相关的自旋弛豫和迁移机制仍未得到探索。在此,我们描述了一种哑铃状偶氮苯双自由基,并将其固态灵活性与自旋弛豫和迁移相关联。我们采用X射线衍射和拉曼光谱相结合的方法来确定分子随温度的变化。加热导致:i)自旋分布的调制;ii)在低温下由偶氮苯核心的分子内旋转振动驱动的“正常”醌型→芳香族转变,以及在高温下由各向异性分子间相互作用放大的偶氮苯双踏板运动激活的“反向”芳香族→醌型变化。这些振动状态的热激发调制了双自由基的电子和自旋结构,其具有的振动电子耦合机制可能与未来设计具有可调磁性能的高自旋有机分子以用于固态自旋电子学相关。