Suppr超能文献

诱导多能干细胞揭示精神分裂症常见的神经发育基因组去程序化现象。

Induced Pluripotent Stem Cells Reveal Common Neurodevelopmental Genome Deprograming in Schizophrenia.

作者信息

Narla Sridhar T, Decker Brandon, Sarder Pinaki, Stachowiak Ewa K, Stachowiak Michal K

机构信息

Department of Pathology and Anatomical Sciences, Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, NY, USA.

Department of Biomedical Engineering, State University of New York, Buffalo, NY, USA.

出版信息

Results Probl Cell Differ. 2018;66:137-162. doi: 10.1007/978-3-319-93485-3_6.

Abstract

Schizophrenia is a neurodevelopmental disorder characterized by complex aberrations in the structure, wiring, and chemistry of multiple neuronal systems. The abnormal developmental trajectory of the brain is established during gestation, long before clinical manifestation of the disease. Over 200 genes and even greater numbers of single nucleotide polymorphisms and copy number variations have been linked with schizophrenia. How does altered function of such a variety of genes lead to schizophrenia? We propose that the protein products of these altered genes converge on a common neurodevelopmental pathway responsible for the development of brain neural circuit and neurotransmitter systems. The results of a multichanneled investigation using induced pluripotent stem cell (iPSCs)- and embryonic stem cell (ESCs)-derived neuronal committed cells (NCCs) indicate an early (preneuronal) developmental-genomic etiology of schizophrenia and that the dysregulated developmental gene networks are common to genetically unrelated cases of schizophrenia. The results support a "watershed" mechanism in which mutations within diverse signaling pathways affect the common pan-ontogenic mechanism, integrative nuclear (n)FGFR1 signaling (INFS). Dysregulation of INFS in schizophrenia NCCs deconstructs coordinated gene networks and leads to formation of new networks by the dysregulated genes. This genome deprograming affects critical gene programs and pathways for neural development and functions. Studies show that the genomic deprograming reflect an altered nFGFR1-genome interactions and deregulation of miRNA genes by nFGFR1. In addition, changes in chromatin topology imposed by nFGFR1 may play a role in coordinate gene dysregulation in schizophrenia.

摘要

精神分裂症是一种神经发育障碍,其特征是多个神经元系统在结构、连接和化学方面存在复杂的畸变。大脑异常的发育轨迹在妊娠期间就已确立,远早于该疾病的临床表现。超过200个基因以及更多数量的单核苷酸多态性和拷贝数变异与精神分裂症有关。如此多种基因的功能改变是如何导致精神分裂症的呢?我们提出,这些改变基因的蛋白质产物汇聚在一条共同的神经发育通路上,该通路负责脑神经网络和神经递质系统的发育。使用诱导多能干细胞(iPSC)和胚胎干细胞(ESC)衍生的神经元定向分化细胞(NCC)进行的多渠道研究结果表明,精神分裂症存在早期(神经元前)发育基因组病因,并且失调的发育基因网络在精神分裂症的遗传无关病例中是常见的。这些结果支持一种“分水岭”机制,即不同信号通路中的突变会影响共同的泛个体发生机制,即整合核(n)FGFR1信号传导(INFS)。精神分裂症NCC中INFS的失调会解构协调的基因网络,并导致失调基因形成新的网络。这种基因组重编程会影响神经发育和功能的关键基因程序和通路。研究表明,基因组重编程反映了nFGFR1与基因组相互作用的改变以及nFGFR1对miRNA基因的失调。此外,nFGFR1施加的染色质拓扑结构变化可能在精神分裂症的协调基因失调中起作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验