Leaden Laura, Silva Larissa G, Ribeiro Rodolfo A, Dos Santos Naara M, Lorenzetti Alan P R, Alegria Thiago G P, Schulz Mariane L, Medeiros Marisa H G, Koide Tie, Marques Marilis V
Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
Front Microbiol. 2018 Aug 28;9:2014. doi: 10.3389/fmicb.2018.02014. eCollection 2018.
In , iron metabolism is mainly controlled by the transcription factor Fur (ferric uptake regulator). Iron-bound Fur represses genes related to iron uptake and can directly activate the expression of genes for iron-containing proteins. In this work, we used total RNA sequencing (RNA-seq) of wild type growing in minimal medium under iron limitation and a mutant strain to expand the known Fur regulon, and to identify novel iron-regulated genes. The RNA-seq of cultures treated with the iron chelator 2-2-dypiridyl (DP) allowed identifying 256 upregulated genes and 236 downregulated genes, being 176 and 204 newly identified, respectively. Sixteen transcription factors and seven sRNAs were upregulated in iron limitation, suggesting that the response to low iron triggers a complex regulatory network. Notably, along with most of its target genes were upregulated, suggesting that DP treatment caused DNA damage, and the SOS DNA repair response was activated in a RecA-dependent manner, as confirmed by RT-qPCR. Fluorescence microscopy assays using an oxidation-sensitive dye showed that wild type cells in iron limitation and the mutant were under endogenous oxidative stress, and a direct measurement of cellular HO showed that cells in iron-limited media present a higher amount of endogenous HO. A mutagenesis assay using the gene as a reporter showed that iron limitation led to an increase in the mutagenesis rate. These results showed that iron deficiency causes cells to suffer oxidative stress and to activate the SOS response, indicating an increase in DNA damage.
在[具体生物名称未给出]中,铁代谢主要由转录因子Fur(铁摄取调节因子)控制。与铁结合的Fur会抑制与铁摄取相关的基因,并能直接激活含铁蛋白基因的表达。在这项工作中,我们对在缺铁条件下于基本培养基中生长的野生型[具体生物名称未给出]和一个[具体突变菌株名称未给出]突变株进行了全RNA测序(RNA-seq),以扩展已知的Fur调控子,并鉴定新的铁调节基因。用铁螯合剂2,2-联吡啶(DP)处理的培养物的RNA-seq鉴定出256个上调基因和236个下调基因,分别有176个和204个是新鉴定的。在缺铁条件下,16个转录因子和7个小RNA上调,这表明对低铁的反应触发了一个复杂的调控网络。值得注意的是,[具体基因名称未给出]及其大多数靶基因都上调了,这表明DP处理导致了DNA损伤,并且SOS DNA修复反应以RecA依赖的方式被激活,这一点通过RT-qPCR得到了证实。使用氧化敏感染料的荧光显微镜检测表明,缺铁条件下的野生型细胞和[具体突变菌株名称未给出]突变株处于内源性氧化应激状态,对细胞内过氧化氢(HO)的直接测量表明,缺铁培养基中的细胞内源性HO含量更高。使用[具体基因名称未给出]基因作为报告基因的诱变试验表明,缺铁导致诱变率增加。这些结果表明,铁缺乏导致[具体生物名称未给出]细胞遭受氧化应激并激活SOS反应,这表明DNA损伤增加。