Nachev Parashkev, Rees Geraint, Frackowiak Richard
Institute of Neurology, University College London, London, WC1N 3BG, UK.
Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK.
F1000Res. 2018 May 21;7:620. doi: 10.12688/f1000research.15020.2. eCollection 2018.
Translation in cognitive neuroscience remains beyond the horizon, brought no closer by supposed major advances in our understanding of the brain. Unless our explanatory models descend to the individual level-a cardinal requirement for any intervention-their real-world applications will always be limited. Drawing on an analysis of the informational properties of the brain, here we argue that adequate individualisation needs models of far greater dimensionality than has been usual in the field. This necessity arises from the widely distributed causality of neural systems, a consequence of the fundamentally adaptive nature of their developmental and physiological mechanisms. We discuss how recent advances in high-performance computing, combined with collections of large-scale data, enable the high-dimensional modelling we argue is critical to successful translation, and urge its adoption if the ultimate goal of impact on the lives of patients is to be achieved.
认知神经科学中的转化研究仍遥不可及,尽管我们对大脑的理解有了所谓的重大进展,但这一目标并未因此而更接近实现。除非我们的解释模型深入到个体层面——这是任何干预措施的基本要求——否则它们在现实世界中的应用将始终受到限制。基于对大脑信息属性的分析,我们在此认为,与该领域通常情况相比,充分的个体化需要维度更高得多的模型。这种必要性源于神经系统广泛分布的因果关系,这是其发育和生理机制的基本适应性本质所导致的结果。我们讨论了高性能计算的最新进展与大规模数据集合相结合,如何能够实现我们所认为的对成功转化至关重要的高维建模,并敦促如果要实现对患者生活产生影响的最终目标,就采用这种方法。