State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China.
Department of Aquatic Ecology , Eawag: Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , CH-8600 Dübendorf , Switzerland.
Environ Sci Technol. 2018 Oct 16;52(20):11708-11719. doi: 10.1021/acs.est.8b03869. Epub 2018 Sep 25.
Rivers are among the most threatened freshwater ecosystems, and anthropogenic activities are affecting both river structures and water quality. While assessing the organisms can provide a comprehensive measure of a river's ecological status, it is limited by the traditional morphotaxonomy-based biomonitoring. Recent advances in environmental DNA (eDNA) metabarcoding allow to identify prokaryotes and eukaryotes in one sequencing run, and could thus allow unprecedented resolution. Whether such eDNA-based data can be used directly to predict the pollution status of rivers as a complementation of environmental data remains unknown. Here we used eDNA metabarcoding to explore the main stressors of rivers along which community structure changes, and to identify the method's potential for predicting pollution status based on eDNA data. We showed that a broad range of taxa in bacterial, protistan, and metazoan communities could be profiled with eDNA. Nutrients were the main driving stressor affecting communities' structure, alpha diversity, and the ecological network. We specifically observed that the relative abundance of indicative OTUs was significantly correlated with nutrient levels. These OTUs data could be used to predict the nutrient status up to 79% accuracy on testing data sets. Thus, our study gives a novel approach to predicting the pollution status of rivers by eDNA data.
河流是最受威胁的淡水生态系统之一,人为活动正在影响河流的结构和水质。虽然评估生物可以提供河流生态状况的综合衡量标准,但它受到传统形态分类学为基础的生物监测的限制。最近在环境 DNA (eDNA) 宏条形码方面的进展可以在一次测序运行中识别原核生物和真核生物,因此可以提供前所未有的分辨率。这种基于 eDNA 的数据是否可以直接用于预测河流的污染状况,作为环境数据的补充,目前尚不清楚。在这里,我们使用 eDNA 宏条形码来探索沿河流的主要胁迫因素,这些因素导致群落结构发生变化,并确定该方法基于 eDNA 数据预测污染状况的潜力。我们表明,细菌、原生动物和后生动物群落中的广泛分类群可以通过 eDNA 进行分析。营养物质是影响群落结构、alpha 多样性和生态网络的主要驱动胁迫因素。我们特别观察到,指示 OTUs 的相对丰度与营养水平显著相关。这些 OTUs 数据可以在测试数据集上以高达 79%的准确度预测营养状况。因此,我们的研究为通过 eDNA 数据预测河流的污染状况提供了一种新方法。