Suppr超能文献

通过 pH 响应性 DNA 键调节适体特异性。

Modulating Aptamer Specificity with pH-Responsive DNA Bonds.

机构信息

Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States.

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , P. R. China.

出版信息

J Am Chem Soc. 2018 Oct 17;140(41):13335-13339. doi: 10.1021/jacs.8b08047. Epub 2018 Oct 4.

Abstract

Aptamers that recognize specific cells in a complex environment have emerged as invaluable molecular tools in bioanalysis and in the development of targeted therapeutics. The selective recognition of aptamers, however, can be compromised by the coexistence of target receptors on both target cells and other cells. To address this problem, we constructed a structure-switchable aptamer (SW-Apt) with reconfigurable binding affinity in accordance with the microenvironment of target cells. The SW-Apt makes use of i-motifs, which are quadruplex structures that form in sequences rich in cytosine. More specifically, we report the design of single-stranded, pH-responsive i-motif-modified aptamers able to bind specifically with target cells by exploiting their pH. Here, the i-motif serves as a structural domain to either facilitate the binding ability of aptamers to target cells or suppress the binding ability of aptamers to nontarget cell based on the pH of the cellular microenvironment. SW-Apt exhibited high binding ability with target cells at acidic pH, while no obvious binding was observed at physiological pH. The i-motif-induced structure-switching was verified with Förster resonance energy transfer and circular dichroism spectroscopy. Notably, SW-Apt exhibits high specificity in serum and excellent stability, likely attributed to the folded quadruplex i-motif structure. This study provides a simple and efficient strategy to chemically modulate aptamer binding ability and thus improve aptamer binding specificity to target cells, irrespective of the coexistence of identical receptors on target and nontarget cells.

摘要

适体作为一种在复杂环境中识别特定细胞的分子工具,在生物分析和靶向治疗药物的开发中具有重要价值。然而,适体的选择性识别可能会受到靶细胞和其他细胞上靶受体共存的影响。为了解决这个问题,我们构建了一种结构可切换的适体(SW-Apt),它具有根据靶细胞微环境可重构的结合亲和力。SW-Apt 利用了 i-motif,即富含胞嘧啶的序列中形成的四链体结构。更具体地说,我们报告了设计具有单链、pH 响应的 i-motif 修饰的适体,通过利用其 pH 值,能够特异性地与靶细胞结合。在这里,i-motif 作为一个结构域,根据细胞微环境的 pH 值,促进适体与靶细胞的结合能力,或抑制适体与非靶细胞的结合能力。SW-Apt 在酸性 pH 下与靶细胞具有高结合能力,而在生理 pH 下则没有明显的结合。通过Förster 共振能量转移和圆二色性光谱验证了 i-motif 诱导的结构切换。值得注意的是,SW-Apt 在血清中表现出高特异性和优异的稳定性,这可能归因于折叠的四链体 i-motif 结构。这项研究提供了一种简单有效的策略,用于化学调节适体的结合能力,从而提高适体与靶细胞的结合特异性,而不受靶细胞和非靶细胞上相同受体共存的影响。

相似文献

1
Modulating Aptamer Specificity with pH-Responsive DNA Bonds.
J Am Chem Soc. 2018 Oct 17;140(41):13335-13339. doi: 10.1021/jacs.8b08047. Epub 2018 Oct 4.
3
Direct Selection Strategy for Isolating Aptamers with pH-Sensitive Binding Activity.
ACS Sens. 2018 Dec 28;3(12):2574-2580. doi: 10.1021/acssensors.8b00945. Epub 2018 Dec 6.
4
Engineering G-quadruplex aptamer to modulate its binding specificity.
Natl Sci Rev. 2020 Aug 31;8(4):nwaa202. doi: 10.1093/nsr/nwaa202. eCollection 2021 Apr.
5
Engineering a Facile Aptamer "Molecule-Doctor" with Hairpin-Contained I-Motif Enables Accurate Imaging and Killing of Cancer Cells.
Anal Chem. 2021 Nov 2;93(43):14552-14559. doi: 10.1021/acs.analchem.1c03580. Epub 2021 Oct 22.
9
A Simple, pH-Activatable Fluorescent Aptamer Probe with Ultralow Background for Bispecific Tumor Imaging.
Anal Chem. 2019 Jul 16;91(14):9154-9160. doi: 10.1021/acs.analchem.9b01828. Epub 2019 Jun 24.
10
Enhancing aptamer function and stability via in vitro selection using modified nucleic acids.
Methods. 2016 Aug 15;106:29-36. doi: 10.1016/j.ymeth.2016.03.008. Epub 2016 Mar 21.

引用本文的文献

1
Antibody and aptamer-based therapies for osteoarthritis: Application of antibodies and promise of aptamers.
Mol Ther Nucleic Acids. 2025 May 5;36(2):102552. doi: 10.1016/j.omtn.2025.102552. eCollection 2025 Jun 10.
3
Quantitative Characterization of Partitioning Stringency in SELEX.
JACS Au. 2024 Dec 9;4(12):4910-4920. doi: 10.1021/jacsau.4c00890. eCollection 2024 Dec 23.
5
Designing biomimetic two-dimensional channels for uranium separation from seawater.
Chem Sci. 2024 Jun 10;15(27):10455-10463. doi: 10.1039/d4sc02801e. eCollection 2024 Jul 10.
6
Aptamer-Based Nongenetic Reprogramming of CARs Enables Flexible Modulation of T Cell-Mediated Tumor Immunotherapy.
ACS Cent Sci. 2024 Mar 21;10(4):813-822. doi: 10.1021/acscentsci.3c01511. eCollection 2024 Apr 24.
7
Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing.
Adv Biochem Eng Biotechnol. 2024;187:71-106. doi: 10.1007/10_2023_235.
8
A collagen-immobilized nanodevice for ratiometric imaging of cancer biomarkers in the tumor microenvironment.
Chem Sci. 2023 Oct 3;14(43):12182-12193. doi: 10.1039/d3sc03972b. eCollection 2023 Nov 8.
9
Aptamer-based self-assembled nanomicelle enables efficient and targeted drug delivery.
J Nanobiotechnology. 2023 Nov 9;21(1):415. doi: 10.1186/s12951-023-02164-y.

本文引用的文献

1
Supramolecularly Engineered Circular Bivalent Aptamer for Enhanced Functional Protein Delivery.
J Am Chem Soc. 2018 Jun 6;140(22):6780-6784. doi: 10.1021/jacs.8b03442. Epub 2018 May 24.
2
Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer.
Proc Natl Acad Sci U S A. 2018 May 1;115(18):4761-4766. doi: 10.1073/pnas.1717705115. Epub 2018 Apr 16.
3
Ligand-Targeted Drug Delivery.
Chem Rev. 2017 Oct 11;117(19):12133-12164. doi: 10.1021/acs.chemrev.7b00013. Epub 2017 Sep 12.
4
Circular Bivalent Aptamers Enable in Vivo Stability and Recognition.
J Am Chem Soc. 2017 Jul 12;139(27):9128-9131. doi: 10.1021/jacs.7b04547. Epub 2017 Jun 29.
5
Stimuli-Responsive DNA-Functionalized Metal-Organic Frameworks (MOFs).
Adv Mater. 2017 Feb;29(6). doi: 10.1002/adma.201602782. Epub 2016 Dec 6.
6
Cancer nanomedicine: progress, challenges and opportunities.
Nat Rev Cancer. 2017 Jan;17(1):20-37. doi: 10.1038/nrc.2016.108. Epub 2016 Nov 11.
7
Aptamers as targeted therapeutics: current potential and challenges.
Nat Rev Drug Discov. 2017 Mar;16(3):181-202. doi: 10.1038/nrd.2016.199. Epub 2016 Nov 3.
8
Aptamer-Drug Conjugates.
Bioconjug Chem. 2015 Nov 18;26(11):2186-97. doi: 10.1021/acs.bioconjchem.5b00291. Epub 2015 Jul 14.
9
Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapy.
J Am Chem Soc. 2015 Jan 21;137(2):667-74. doi: 10.1021/ja509263k. Epub 2014 Nov 25.
10
Biocomputing based on particle disassembly.
Nat Nanotechnol. 2014 Sep;9(9):716-22. doi: 10.1038/nnano.2014.156. Epub 2014 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验