Suppr超能文献

基于 GROMOS 力场的卤键的生物分子模拟。

Biomolecular Simulations of Halogen Bonds with a GROMOS Force Field.

机构信息

Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade de Lisboa , Campo Grande, 1749-016 Lisboa , Portugal.

BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências , Universidade de Lisboa , Campo Grande, C8 bdg, 1749-016 Lisboa , Portugal.

出版信息

J Chem Theory Comput. 2018 Oct 9;14(10):5383-5392. doi: 10.1021/acs.jctc.8b00278. Epub 2018 Sep 28.

Abstract

Halogen bonds (XBs) are non-covalent interactions in which halogens (X), acting as electrophiles, interact with Lewis bases. XBs are able to mediate protein-ligand recognition and therefore play an important role in rational drug design. In this context, the development of molecular modeling tools that can tackle XBs is paramount. XBs are predominantly explained by the existence of a positive region on the electrostatic potential of X named the σ-hole. Typically, with molecular mechanics force fields, this region is modeled using a charged extra point (EP) linked to X along the R-X covalent bond axis. In this work, we developed the first EP-based strategy for GROMOS force fields (specifically GROMOS 54A7) using bacteriophage T4 lysozyme in complex with both iodobenzene and iodopentafluorobenzene as a prototype system. Several EP parametrization schemes were tested by adding a virtual interaction site to ligand topologies retrieved from the Automated Topology Builder (ATB) and Repository. Contrary to previous approaches using other force fields, our analysis is based on the capability of each parametrization scheme to sample XBs during MD simulations. Our results indicate that the implementation of an EP at a distance from iodine corresponding to R provides a good qualitative description of XBs in MD simulations, supporting the compatibility of our approach with the GROMOS 54A7 force field.

摘要

卤素键(XBs)是非共价相互作用,其中卤素(X)作为亲电体,与路易斯碱相互作用。XBs 能够介导蛋白质-配体识别,因此在合理药物设计中起着重要作用。在这种情况下,开发能够处理 XBs 的分子建模工具至关重要。XBs 主要通过 X 上静电势能的正区域来解释,该区域称为 σ-hole。通常,在分子力学力场中,该区域通过沿着 R-X 共价键轴与 X 连接的带电额外点 (EP) 来建模。在这项工作中,我们使用噬菌体 T4 溶菌酶作为原型系统,开发了基于 EP 的第一个 GROMOS 力场(特别是 GROMOS 54A7)策略。通过向从自动拓扑生成器 (ATB) 和存储库检索的配体拓扑结构添加虚拟相互作用位点,测试了几种 EP 参数化方案。与使用其他力场的先前方法相反,我们的分析基于每个参数化方案在 MD 模拟期间采样 XBs 的能力。我们的结果表明,在距离碘对应的 R 的距离处实施 EP 可以很好地定性描述 MD 模拟中的 XBs,这支持了我们的方法与 GROMOS 54A7 力场的兼容性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验