Suppr超能文献

Gumpy:一个适用于混合脑机接口的 Python 工具包。

Gumpy: a Python toolbox suitable for hybrid brain-computer interfaces.

机构信息

Department of Electrical and Computer Engineering, Neuroscientific System Theory, Technical University of Munich, Munich, Germany. Institute for Cognitive Systems, Technical University of Munich, Munich, Germany.

出版信息

J Neural Eng. 2018 Dec;15(6):065003. doi: 10.1088/1741-2552/aae186. Epub 2018 Sep 14.

Abstract

OBJECTIVE

The objective of this work is to present gumpy, a new free and open source Python toolbox designed for hybrid brain-computer interface (BCI).

APPROACH

Gumpy provides state-of-the-art algorithms and includes a rich selection of signal processing methods that have been employed by the BCI community over the last 20 years. In addition, a wide range of classification methods that span from classical machine learning algorithms to deep neural network models are provided. Gumpy can be used for both EEG and EMG biosignal analysis, visualization, real-time streaming and decoding.

RESULTS

The usage of the toolbox was demonstrated through two different offline example studies, namely movement prediction from EEG motor imagery, and the decoding of natural grasp movements with the applied finger forces from surface EMG (sEMG) signals. Additionally, gumpy was used for real-time control of a robot arm using steady-state visually evoked potentials (SSVEP) as well as for real-time prosthetic hand control using sEMG. Overall, obtained results with the gumpy toolbox are comparable or better than previously reported results on the same datasets.

SIGNIFICANCE

Gumpy is a free and open source software, which allows end-users to perform online hybrid BCIs and provides different techniques for processing and decoding of EEG and EMG signals. More importantly, the achieved results reveal that gumpy's deep learning toolbox can match or outperform the state-of-the-art in terms of accuracy. This can therefore enable BCI researchers to develop more robust decoding algorithms using novel techniques and hence chart a route ahead for new BCI improvements.

摘要

目的

本研究旨在介绍 gumpy,这是一个新的免费开源 Python 工具包,专为混合脑机接口 (BCI) 设计。

方法

Gumpy 提供了最先进的算法,并包含了丰富的信号处理方法选择,这些方法是 BCI 社区在过去 20 年中采用的。此外,还提供了广泛的分类方法,从经典机器学习算法到深度神经网络模型都有涵盖。Gumpy 可用于 EEG 和 EMG 生物信号分析、可视化、实时流和解码。

结果

通过两个不同的离线示例研究展示了该工具包的使用,即基于 EEG 运动想象的运动预测,以及使用表面肌电图 (sEMG) 信号的施加手指力对自然抓握运动的解码。此外,gumpy 还用于使用稳态视觉诱发电位 (SSVEP) 对机器人手臂进行实时控制,以及使用 sEMG 对仿生手进行实时控制。总体而言,gumpy 工具包获得的结果与在相同数据集上报告的先前结果相当或更好。

意义

Gumpy 是一个免费的开源软件,允许最终用户进行在线混合 BCI,并为 EEG 和 EMG 信号的处理和解码提供了不同的技术。更重要的是,所取得的结果表明,gumpy 的深度学习工具箱在准确性方面可以与最先进的技术相媲美或超越。这可以使 BCI 研究人员能够使用新的技术开发更强大的解码算法,从而为新的 BCI 改进开辟道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验