基于胶囊网络的运动想象脑电信号分类。
Motor Imagery EEG Classification Using Capsule Networks.
机构信息
Department of Computer Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea.
出版信息
Sensors (Basel). 2019 Jun 27;19(13):2854. doi: 10.3390/s19132854.
Various convolutional neural network (CNN)-based approaches have been recently proposed to improve the performance of motor imagery based-brain-computer interfaces (BCIs). However, the classification accuracy of CNNs is compromised when target data are distorted. Specifically for motor imagery electroencephalogram (EEG), the measured signals, even from the same person, are not consistent and can be significantly distorted. To overcome these limitations, we propose to apply a capsule network (CapsNet) for learning various properties of EEG signals, thereby achieving better and more robust performance than previous CNN methods. The proposed CapsNet-based framework classifies the two-class motor imagery, namely right-hand and left-hand movements. The motor imagery EEG signals are first transformed into 2D images using the short-time Fourier transform (STFT) algorithm and then used for training and testing the capsule network. The performance of the proposed framework was evaluated on the BCI competition IV 2b dataset. The proposed framework outperformed state-of-the-art CNN-based methods and various conventional machine learning approaches. The experimental results demonstrate the feasibility of the proposed approach for classification of motor imagery EEG signals.
最近已经提出了各种基于卷积神经网络(CNN)的方法来提高基于运动想象的脑机接口(BCI)的性能。然而,当目标数据失真时,CNN 的分类准确性会受到影响。具体来说,对于运动想象脑电图(EEG),即使是来自同一个人的测量信号也不一致,并且可能会有很大的失真。为了克服这些限制,我们提出应用胶囊网络(CapsNet)来学习 EEG 信号的各种特性,从而实现比以前的 CNN 方法更好和更稳健的性能。所提出的基于 CapsNet 的框架对两种运动想象进行分类,即右手和左手运动。使用短时傅里叶变换(STFT)算法将运动想象 EEG 信号转换为 2D 图像,然后用于训练和测试胶囊网络。在 BCI 竞赛 IV 2b 数据集上评估了所提出框架的性能。所提出的框架优于最先进的基于 CNN 的方法和各种传统机器学习方法。实验结果证明了该方法用于运动想象 EEG 信号分类的可行性。