Department of Electrical Engineering and Computer Science , University of Michigan , 1301 Beal Avenue , Ann Arbor , Michigan 48109 , United States.
Department of Electrical and Computer Engineering , McGill University , 3480 University Street , Montreal , Quebec H3A 0E9 , Canada.
Nano Lett. 2018 Oct 10;18(10):6530-6537. doi: 10.1021/acs.nanolett.8b03087. Epub 2018 Sep 20.
Photoelectrochemical water splitting is a clean and environmentally friendly method for solar hydrogen generation. Its practical application, however, has been limited by the poor stability of semiconductor photoelectrodes. In this work, we demonstrate the use of GaN nanostructures as a multifunctional protection layer for an otherwise unstable, low-performance photocathode. The direct integration of GaN nanostructures on n-p Si wafer not only protects Si surface from corrosion but also significantly reduces the charge carrier transfer resistance at the semiconductor/liquid junction, leading to long-term stability (>100 h) at a large current density (>35 mA/cm) under 1 sun illumination. The measured applied bias photon-to-current efficiency of 10.5% is among the highest values ever reported for a Si photocathode. Given that both Si and GaN are already widely produced in industry, our studies offer a viable path for achieving high-efficiency and highly stable semiconductor photoelectrodes for solar water splitting with proven manufacturability and scalability.
光电化学水分解是一种清洁、环保的太阳能制氢方法。然而,其实际应用受到半导体光电阴极稳定性差的限制。在这项工作中,我们展示了使用 GaN 纳米结构作为不稳定、低性能光电阴极的多功能保护层。GaN 纳米结构直接集成在 n-p Si 晶片上,不仅可以保护 Si 表面免受腐蚀,还可以显著降低半导体/液体结处的载流子转移电阻,从而在 1 个太阳光照下实现大电流密度 (>35 mA/cm) 下的长期稳定性 (>100 h)。测量得到的 10.5%的应用偏置光电流效率是报道的 Si 光电阴极的最高值之一。鉴于 Si 和 GaN 已经在工业中广泛生产,我们的研究为实现高效、稳定的半导体光电阴极提供了一种可行的途径,用于太阳能水分解,具有经过验证的可制造性和可扩展性。