Suppr超能文献

具有垂直排列二维二硫化钼的改性氮化镓微阱用于增强光电化学水分解

Modified p-GaN Microwells with Vertically Aligned 2D-MoS for Enhanced Photoelectrochemical Water Splitting.

作者信息

Ghosh Dibyendu, Devi Pooja, Kumar Praveen

机构信息

School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700030, India.

Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India.

出版信息

ACS Appl Mater Interfaces. 2020 Mar 25;12(12):13797-13804. doi: 10.1021/acsami.9b20969. Epub 2020 Mar 13.

Abstract

Photoelectrochemical (PEC) water splitting has been considered as the future technology for storing solar energy in the chemical bonds. However, due to the search of ideal heterostructured materials for photoanode/cathode, the full potential of this technology has not been realized yet. Herein we present, the nanotextured hexagonal microwell of p-GaN [p-GaN(Et)] synthesized via wet chemical etching route as a photocathode (PC) for PEC water splitting. The p-GaN(Et) was further modified by interconnected nanowall network of two-dimensional (2D) transition metal dichalcogenide (MoS) [2D-MoS/p-GaN(Et)]. Both PCs were characterized for their morphology, structures, and optical and electronic properties. The overall PEC performance was validated through photocurrent values followed by the amount of hydrogen and oxygen evolution. This combination of 2D-MoS/p-GaN(Et) outplayed pristine p-GaN(Et) by several orders of magnitude in overall PEC performance. The extraordinary stability under a continuous operating condition with 1 sun illumination (100 mW/cm) provides the much-needed flavor of an efficient photocathode. The optimized photocathode [2D-MoS/p-GaN(Et)] shows the highest applied bias photon-to-current conversion efficiency of ∼3.18% with hydrogen evolution rate of 89.56 μmol/h at -0.3 V vs RHE. This wafer-level cost-effective synthesis of 2D-MoS/GaN heterostructure based PCs opens a new way for large-scale solar-fuel conversion.

摘要

光电化学(PEC)水分解被认为是未来将太阳能存储在化学键中的技术。然而,由于寻找用于光阳极/阴极的理想异质结构材料,该技术的全部潜力尚未实现。在此,我们展示了通过湿化学蚀刻路线合成的p型氮化镓[p-GaN(Et)]的纳米纹理化六角微阱作为PEC水分解的光阴极(PC)。p-GaN(Et)进一步通过二维(2D)过渡金属二硫属化物(MoS)的互连纳米壁网络进行修饰[2D-MoS/p-GaN(Et)]。对两种光阴极的形貌、结构以及光学和电子性质进行了表征。通过光电流值以及氢气和氧气析出量验证了整体PEC性能。在整体PEC性能方面,这种2D-MoS/p-GaN(Et)的组合比原始的p-GaN(Et)高出几个数量级。在1个太阳光照(100 mW/cm)的连续运行条件下具有非凡的稳定性,这为高效光阴极提供了急需的特性。优化后的光阴极[2D-MoS/p-GaN(Et)]在相对于可逆氢电极(RHE)为-0.3 V时,显示出最高的施加偏压光子到电流转换效率约为3.18%,析氢速率为89.56 μmol/h。这种基于2D-MoS/GaN异质结构光阴极的晶圆级经济高效合成方法为大规模太阳能燃料转换开辟了一条新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验