Suppr超能文献

交叉熵剪枝用于压缩卷积神经网络。

Cross-Entropy Pruning for Compressing Convolutional Neural Networks.

机构信息

School of Software, Dalian University of Technology, Dalian, Liaoning, China

出版信息

Neural Comput. 2018 Nov;30(11):3128-3149. doi: 10.1162/neco_a_01131. Epub 2018 Sep 14.

Abstract

The success of CNNs is accompanied by deep models and heavy storage costs. For compressing CNNs, we propose an efficient and robust pruning approach, cross-entropy pruning (CEP). Given a trained CNN model, connections were divided into groups in a group-wise way according to their corresponding output neurons. All connections with their cross-entropy errors below a grouping threshold were then removed. A sparse model was obtained and the number of parameters in the baseline model significantly reduced. This letter also presents a highest cross-entropy pruning (HCEP) method that keeps a small portion of weights with the highest CEP. This method further improves the accuracy of CEP. To validate CEP, we conducted the experiments on low redundant networks that are hard to compress. For the MNIST data set, CEP achieves an 0.08% accuracy drop required by LeNet-5 benchmark with only 16% of original parameters. Our proposed CEP also reduces approximately 75% of the storage cost of AlexNet on the ILSVRC 2012 data set, increasing the top-1 errorby only 0.4% and top-5 error by only 0.2%. Compared with three existing methods on LeNet-5, our proposed CEP and HCEP perform significantly better than the existing methods in terms of the accuracy and stability. Some computer vision tasks on CNNs such as object detection and style transfer can be computed in a high-performance way using our CEP and HCEP strategies.

摘要

卷积神经网络的成功伴随着深层模型和大量的存储成本。为了压缩卷积神经网络,我们提出了一种高效而鲁棒的剪枝方法,即交叉熵剪枝(CEP)。对于已训练的卷积神经网络模型,根据其对应的输出神经元,以组的方式将连接分组。然后,删除所有交叉熵误差低于分组阈值的连接。得到一个稀疏模型,并显著减少基线模型中的参数数量。本函还提出了一种最高交叉熵剪枝(HCEP)方法,该方法保留了一小部分具有最高 CEP 的权重。这种方法进一步提高了 CEP 的准确性。为了验证 CEP,我们在难以压缩的低冗余网络上进行了实验。对于 MNIST 数据集,CEP 在 LeNet-5 基准上实现了 0.08%的准确率下降,只需原始参数的 16%。我们提出的 CEP 还减少了 ILSVRC 2012 数据集上 AlexNet 存储成本的约 75%,仅增加了 0.4%的 top-1 误差和 0.2%的 top-5 误差。与 LeNet-5 上的三种现有方法相比,我们提出的 CEP 和 HCEP 在准确性和稳定性方面明显优于现有方法。使用我们的 CEP 和 HCEP 策略,可以以高性能方式计算卷积神经网络上的一些计算机视觉任务,如目标检测和风格迁移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验