Verghese M W, Smith C D, Snyderman R
J Cell Biochem. 1986;32(1):59-69. doi: 10.1002/jcb.240320107.
Leukocyte activation by chemoattractants provides an important model to study the biochemical mechanisms of stimulus-response coupling in these cells. Well-defined chemotactic factors induce readily quantifiable responses in phagocytic leukocytes. These include directed migration and the production and release of toxic substances including oxygen radicals and lysosomal enzymes. The development of radiolabeled synthetic oligopeptides with potent chemotactic activity allowed the demonstration of chemoattractant receptors on polymorphonuclear leukocytes (PMNs) as well as macrophages. In membrane preparations from these cells, these receptors exist in high- and low-affinity states which are regulated by guanosine di- and triphosphates. This suggested that chemoattractant receptors interact with guanine nucleotide regulatory proteins (N or G proteins). Although chemoattractants elicit a rapid but transient increase in intracellular cAMP levels, they neither stimulate nor inhibit membrane-bound adenylate cyclase, suggesting a novel role for N proteins in certain receptor-transduction mechanisms. Stimulation of phagocytes by chemoattractants is also associated with a rapid increase in cytosolic Ca2+ concentrations ([ Ca2+]i) which appears to result from the production of inositol 1,4,5-triphosphate (IP3) as a consequence of the diesteric cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2). Treatment of phagocytes with pertussis toxin (PT), which ADP-ribosylates and thereby inactivates certain N proteins, abolishes the cells' responsiveness to chemoattractants. More direct evidence for a role of a PT-sensitive N protein in leukocyte activation was provided by the demonstration that chemoattractants stimulate the hydrolysis of PIP2 in PMN membranes only in the presence of GTP. This receptor-mediated hydrolysis of PIP2 is not observed in plasma membranes prepared from PT-treated PMNs. Therefore, these studies suggest that occupancy of chemoattractant receptors activates a PT-sensitive N protein. The activated N protein shifts the Ca2+ requirement for phospholipase C activity from supraphysiological levels to ambient cytosolic Ca2+ concentrations. Cleavage of PIP2 results in the formation of the second messenger molecules, IP3 and 1,2-diacylglycerol, which can initiate cellular activation. These messengers also seem to activate responses which feed back to attenuate receptor stimulation of phospholipase.
趋化因子引起的白细胞活化提供了一个重要模型,用于研究这些细胞中刺激-反应偶联的生化机制。定义明确的趋化因子能在吞噬性白细胞中诱导易于定量的反应。这些反应包括定向迁移以及包括氧自由基和溶酶体酶在内的有毒物质的产生和释放。具有强大趋化活性的放射性标记合成寡肽的开发,使得在多形核白细胞(PMN)以及巨噬细胞上证实了趋化因子受体的存在。在这些细胞的膜制剂中,这些受体以高亲和力和低亲和力状态存在,它们受鸟苷二磷酸和三磷酸调节。这表明趋化因子受体与鸟嘌呤核苷酸调节蛋白(N蛋白或G蛋白)相互作用。尽管趋化因子会引起细胞内cAMP水平迅速但短暂的升高,但它们既不刺激也不抑制膜结合的腺苷酸环化酶,这表明N蛋白在某些受体转导机制中具有新的作用。趋化因子对吞噬细胞的刺激还与胞质Ca2+浓度([Ca2+]i)的迅速升高有关,这似乎是由于磷脂酰肌醇4,5-二磷酸(PIP2)的二酯键裂解产生肌醇1,4,5-三磷酸(IP3)的结果。用百日咳毒素(PT)处理吞噬细胞,PT会使某些N蛋白进行ADP核糖基化从而使其失活,消除细胞对趋化因子的反应性。通过证明趋化因子仅在GTP存在的情况下才刺激PMN膜中PIP2的水解,为PT敏感的N蛋白在白细胞活化中的作用提供了更直接的证据。在由PT处理的PMN制备的质膜中未观察到这种受体介导的PIP2水解。因此,这些研究表明趋化因子受体的占据会激活PT敏感的N蛋白。活化的N蛋白将磷脂酶C活性所需的Ca2+从超生理水平转变为周围胞质Ca2+浓度。PIP2的裂解导致第二信使分子IP3和1,2-二酰基甘油的形成,它们可以启动细胞活化。这些信使似乎还激活了反馈以减弱受体对磷脂酶的刺激的反应。