Suppr超能文献

使用人工神经网络自动分配旋转光谱。

Automated assignment of rotational spectra using artificial neural networks.

机构信息

Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.

出版信息

J Chem Phys. 2018 Sep 14;149(10):104106. doi: 10.1063/1.5037715.

Abstract

A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. While these spectra often encode troves of chemical information, identifying and assigning the individual spectra can be challenging. Traditional approaches typically involve visually identifying a pattern. A more modern approach is to apply an automated fitting routine. In this approach, combinations of 3 transitions are searched by trial and error, to fit the , , and rotational constants in a Watson-type Hamiltonian. In this work, we develop an alternative approach-to utilize machine learning to train a computer to recognize the patterns inherent in rotational spectra. Broadband high-resolution rotational spectra are perhaps uniquely suited for pattern recognition, assignment, and species identification using machine learning. Repeating patterns of transition frequencies and intensities are now routinely recorded in broadband chirped-pulse Fourier transform microwave experiments in which both the number of resolution elements and the dynamic range surpass 10. At the same time, these high-resolution spectra are extremely sensitive to molecular geometry with each polar species having a unique rotational spectrum. Here we train the feed forward neural network on thousands of rotational spectra that we calculate, using the rules of quantum mechanics, from randomly generated sets of rotational constants and other Hamiltonian parameters. Reasonable physical constraints are applied to these parameter sets, yet they need not belong to existing species. A trained neural network presented with a spectrum identifies its type (e.g., linear molecule, symmetric top, or asymmetric top) and infers the corresponding Hamiltonian parameters (rotational constants, distortion, and hyperfine constants). The classification and prediction times, about 160 s and 50 s, respectively, seem independent of the spectral complexity or the number of molecular parameters. We describe how the network works, provide benchmarking results, and discuss future directions.

摘要

典型的宽带旋转光谱可能包含数千个可观测的跃迁,跨越多个物种。虽然这些光谱通常包含大量的化学信息,但识别和分配单个光谱可能具有挑战性。传统方法通常涉及视觉识别模式。更现代的方法是应用自动拟合例程。在这种方法中,通过反复试验搜索 3 个跃迁的组合,以拟合 Watson 型哈密顿量中的 、 和 旋转常数。在这项工作中,我们开发了一种替代方法 - 利用机器学习来训练计算机识别旋转光谱中固有的模式。宽带高分辨率旋转光谱可能是唯一适合使用机器学习进行模式识别、分配和物种识别的光谱。跃迁频率和强度的重复模式现在在宽带啁啾脉冲傅里叶变换微波实验中经常记录,其中分辨率元素的数量和动态范围都超过 10。与此同时,这些高分辨率光谱对分子几何结构非常敏感,每个极性物种都有独特的旋转光谱。在这里,我们使用量子力学规则从随机生成的旋转常数和其他哈密顿参数集计算数千个旋转光谱,并在这些光谱上训练前馈神经网络。这些参数集应用了合理的物理约束,但它们不必属于现有物种。经过训练的神经网络会识别出其类型(例如,线性分子、对称顶或不对称顶),并推断出相应的哈密顿参数(旋转常数、变形和超精细常数)。分类和预测时间分别约为 160 秒和 50 秒,似乎与光谱复杂性或分子参数数量无关。我们描述了网络的工作原理,提供了基准测试结果,并讨论了未来的方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验