Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
Pflugers Arch. 2019 Feb;471(2):271-283. doi: 10.1007/s00424-018-2206-0. Epub 2018 Sep 15.
Resistance vessels regulate blood flow by continuously adjusting activity of the wall smooth muscle cells. These cells integrate a variety of stimuli from blood, endothelium, autonomic nerves, and surrounding tissues. Each stimulus elicits an intracellular signaling cascade that eventually influences activation of the contractile machinery. The characteristic time scale of each cascade and the sharing of specific reactions between cascades provide for complex behavior when a vessel receives multiple stimuli. Here, we apply sequential stimulation with invariant concentrations of vasoconstrictor (norepinephrine/methoxamine) and vasodilator (SNAP/carbacol) to rat mesenteric vessels in the wire myograph to show that (1) time elapsed between addition of two vasoactive drugs and (2) the sequence of addition may significantly affect final force development. Furthermore, force oscillations (vasomotion) often appear upon norepinephrine administration. Using computational modeling in combination with nitric oxide (NO) inhibition/NO addition experiments, we show that (3) amplitude and number of oscillating vessels increase over time, (4) the ability of NO to induce vasomotion depends on whether it is applied before or after norepinephrine, and (5) emergence of vasomotion depends on the prior dynamical state of the system; in simulations, this phenomenon appears as "hysteresis." These findings underscore the time-dependent nature of vascular tone generation which must be considered when evaluating the vasomotor effects of multiple, simultaneous stimuli in vitro or in vivo.
阻力血管通过不断调整血管平滑肌细胞的活动来调节血流量。这些细胞整合了来自血液、内皮、自主神经和周围组织的各种刺激。每种刺激都会引发细胞内信号级联反应,最终影响收缩机制的激活。每个级联的特征时间尺度和级联之间特定反应的共享为血管接受多种刺激时提供了复杂的行为。在这里,我们应用具有不变浓度的血管收缩剂(去甲肾上腺素/甲氧胺)和血管扩张剂(SNAP/ carbacol)的顺序刺激,在钢丝肌动描记器中研究大鼠肠系膜血管,以表明(1)两种血管活性药物添加之间的时间间隔,以及(2)添加的顺序可能会显著影响最终的力发展。此外,在去甲肾上腺素给药时经常会出现力振荡(血管运动)。通过使用计算建模与一氧化氮(NO)抑制/NO 添加实验相结合,我们表明(3)随着时间的推移,振荡血管的幅度和数量增加,(4)NO 诱导血管运动的能力取决于它是在去甲肾上腺素之前还是之后应用,以及(5)血管运动的出现取决于系统的先前动力学状态;在模拟中,这种现象表现为“滞后”。这些发现强调了血管张力产生的时间依赖性,在评估体外或体内多种同时刺激的血管运动效应时必须考虑到这一点。