Suppr超能文献

一种用于单层和多层微流控设备操作与自动控制的开源可编程气动装置。

An Open-Source, Programmable Pneumatic Setup for Operation and Automated Control of Single- and Multi-Layer Microfluidic Devices.

作者信息

Brower Kara, Puccinelli Robert, Markin Craig J, Shimko Tyler C, Longwell Scott A, Cruz Bianca, Gomez-Sjoberg Rafael, Fordyce Polly M

机构信息

Department of Bioengineering, Stanford University, Stanford CA 94305.

Chem-H Institute, Stanford University, Stanford CA 94305.

出版信息

HardwareX. 2018 Apr;3:117-134. doi: 10.1016/j.ohx.2017.10.001. Epub 2017 Oct 31.

Abstract

Microfluidic technologies have been used across diverse disciplines ( high-throughput biological measurement, fluid physics, laboratory fluid manipulation) but widespread adoption has been limited in part due to the lack of openly disseminated resources that enable non-specialist labs to make and operate their own devices. Here, we report the open-source build of a pneumatic setup capable of operating both single and multilayer (Quake-style) microfluidic devices with programmable scripting automation. This setup can operate both simple and complex devices with 48 device valve control inputs and 18 sample inputs, with modular design for easy expansion, at a fraction of the cost of similar commercial solutions. We present a detailed step-by-step guide to building the pneumatic instrumentation, as well as instructions for custom device operation using our software, Geppetto, through an easy-to-use GUI for live on-chip valve actuation and a scripting system for experiment automation. We show robust valve actuation with near real-time software feedback and demonstrate use of the setup for high-throughput biochemical measurements on-chip. This open-source setup will enable specialists and novices alike to run microfluidic devices easily in their own laboratories.

摘要

微流控技术已应用于多个不同学科(高通量生物测量、流体物理学、实验室流体操作),但广泛采用受到一定限制,部分原因是缺乏公开传播的资源,使得非专业实验室能够制造和操作自己的设备。在此,我们报告一种气动装置的开源构建,该装置能够通过可编程脚本自动化操作单层和多层(类似Quake风格)微流控设备。此装置可以通过48个设备阀门控制输入和18个样品输入来操作简单和复杂的设备,采用模块化设计便于扩展,成本仅为类似商业解决方案的一小部分。我们提供了构建气动仪器的详细分步指南,以及使用我们的软件Geppetto进行定制设备操作的说明,通过易于使用的图形用户界面进行实时芯片上阀门驱动,并通过脚本系统实现实验自动化。我们展示了具有近乎实时软件反馈的强大阀门驱动,并演示了该装置用于芯片上高通量生化测量的用途。这种开源装置将使专家和新手都能够在自己的实验室中轻松运行微流控设备。

相似文献

2
micrIO: an open-source autosampler and fraction collector for automated microfluidic input-output.
Lab Chip. 2020 Jan 7;20(1):93-106. doi: 10.1039/c9lc00512a. Epub 2019 Nov 8.
3
Controller for microfluidic large-scale integration.
HardwareX. 2018 Apr;3:135-145. doi: 10.1016/j.ohx.2017.10.002. Epub 2017 Oct 31.
5
Programmable Paper-Based Microfluidic Devices for Biomarker Detections.
Micromachines (Basel). 2019 Aug 2;10(8):516. doi: 10.3390/mi10080516.
6
µPump: An open-source pressure pump for precision fluid handling in microfluidics.
HardwareX. 2020 Jan 21;7:e00096. doi: 10.1016/j.ohx.2020.e00096. eCollection 2020 Apr.
7
Automated and parallel microfluidic DNA extraction with integrated pneumatic microvalves/pumps and reusable open-channel columns.
Electrophoresis. 2023 May;44(9-10):825-834. doi: 10.1002/elps.202200185. Epub 2023 Jan 31.
9
Automated solid phase DNA extraction on a lab-on-a-disc with two-degrees of freedom instrumentation.
Anal Chim Acta. 2023 Nov 1;1280:341859. doi: 10.1016/j.aca.2023.341859. Epub 2023 Sep 30.

引用本文的文献

2
Hydrophilic/Omniphobic Droplet Arrays for High-throughput and Quantitative Enzymology.
Anal Chem. 2025 Apr 29;97(16):8957-8967. doi: 10.1021/acs.analchem.5c00333. Epub 2025 Apr 16.
3
Quantifying protein unfolding kinetics with a high-throughput microfluidic platform.
bioRxiv. 2025 Jan 18:2025.01.15.633299. doi: 10.1101/2025.01.15.633299.
5
On-ratio PDMS bonding for multilayer microfluidic device fabrication.
J Micromech Microeng. 2019 Oct;29(10). doi: 10.1088/1361-6439/ab341e. Epub 2019 Aug 7.
8
High-throughput affinity measurements of direct interactions between activation domains and co-activators.
bioRxiv. 2024 Aug 20:2024.08.19.608698. doi: 10.1101/2024.08.19.608698.
9
Engineering global and local signal generators for probing temporal and spatial cellular signaling dynamics.
Front Bioeng Biotechnol. 2023 Sep 14;11:1239026. doi: 10.3389/fbioe.2023.1239026. eCollection 2023.
10
Pneumatic computers for embedded control of microfluidics.
Sci Adv. 2023 Jun 2;9(22):eadg0201. doi: 10.1126/sciadv.adg0201.

本文引用的文献

1
Programmable Microfluidic Synthesis of Over One Thousand Uniquely Identifiable Spectral Codes.
Adv Opt Mater. 2017 Feb 2;5(3). doi: 10.1002/adom.201600548. Epub 2016 Oct 18.
2
Open-source, community-driven microfluidics with Metafluidics.
Nat Biotechnol. 2017 Jun 7;35(6):523-529. doi: 10.1038/nbt.3873.
4
Enabling Microfluidics: from Clean Rooms to Makerspaces.
Trends Biotechnol. 2017 May;35(5):383-392. doi: 10.1016/j.tibtech.2017.01.001. Epub 2017 Feb 3.
5
Microfluidics: reframing biological enquiry.
Nat Rev Mol Cell Biol. 2015 Sep;16(9):554-67. doi: 10.1038/nrm4041.
6
Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E607-15. doi: 10.1073/pnas.1416756112. Epub 2015 Feb 2.
7
Getting started with open-hardware: development and control of microfluidic devices.
Electrophoresis. 2014 Aug;35(16):2370-7. doi: 10.1002/elps.201400128. Epub 2014 Jul 14.
8
The present and future role of microfluidics in biomedical research.
Nature. 2014 Mar 13;507(7491):181-9. doi: 10.1038/nature13118.
9
High-throughput microfluidic single-cell digital polymerase chain reaction.
Anal Chem. 2013 Aug 6;85(15):7182-90. doi: 10.1021/ac400896j. Epub 2013 Jul 24.
10
The potential impact of droplet microfluidics in biology.
Anal Chem. 2013 Apr 2;85(7):3476-82. doi: 10.1021/ac400257c. Epub 2013 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验