Lai Andre, Altemose Nicolas, White Jonathan A, Streets Aaron M
Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, United States of America.
Chan Zuckerberg Biohub, San Francisco, CA 94158, United States of America.
J Micromech Microeng. 2019 Oct;29(10). doi: 10.1088/1361-6439/ab341e. Epub 2019 Aug 7.
Integrated elastomeric valves, also referred to as Quake valves, enable precise control and manipulation of fluid within microfluidic devices. Fabrication of such valves requires bonding of multiple layers of the silicone polymer polydimethylsiloxane (PDMS). The conventional method for PDMS-PDMS bonding is to use varied ratios of base to crosslinking agent between layers, typically 20:1 and 5:1. This bonding technique, known as 'off-ratio bonding', provides strong, effective PDMS-PDMS bonding for multi-layer soft-lithography, but it can yield adverse PDMS material properties and can be wasteful of PDMS. Here we demonstrate the effectiveness of 'on-ratio' PDMS bonding, in which both layers use a 10:1 base-to-crosslinker ratio, for multilayer soft lithography. We show the efficacy of this technique among common variants of PDMS: Sylgard 184, RTV 615, and Sylgard 182.
集成弹性体阀,也称为Quake阀,能够精确控制和操纵微流控设备内的流体。制造这种阀需要将多层聚二甲基硅氧烷(PDMS)硅酮聚合物进行键合。PDMS与PDMS键合的传统方法是在各层之间使用不同比例的基础剂与交联剂,通常为20:1和5:1。这种键合技术,即“非比例键合”,为多层软光刻提供了牢固、有效的PDMS与PDMS键合,但它可能会产生不利的PDMS材料特性,并且会浪费PDMS。在这里,我们展示了“比例键合”PDMS键合的有效性,即两层均使用10:1的基础剂与交联剂比例,用于多层软光刻。我们展示了该技术在常见的PDMS变体(Sylgard 184、RTV 615和Sylgard 182)中的有效性。