Suppr超能文献

cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones.

作者信息

Paupardin-Tritsch D, Hammond C, Gerschenfeld H M, Nairn A C, Greengard P

出版信息

Nature. 1986;323(6091):812-4. doi: 10.1038/323812a0.

Abstract

Protein phosphorylation catalysed by cyclic AMP-dependent, Ca2+/calmodulin-dependent and Ca2+/diacylglycerol-dependent protein kinases is important both in the modulation of synaptic transmission and in the regulation of neuronal membrane permeability (for reviews see refs 5-7). However, there has previously been no evidence for the involvement of cyclic GMP-dependent protein kinase (cGMP-PK) in the regulation of neuronal function. Serotonin induces an increase of Ca2+ current in a group of identified ventral neurones of the snail Helix aspersa. This effect is probably mediated by cGMP because it is mimicked by the intracellular injection of cGMP or the application of zaprinast, an inhibitor of cGMP-dependent phosphodiesterase. We have now found that the effect of either serotonin or zaprinast on the Ca2+ current is potentiated by the intracellular injection of cGMP-PK. Moreover, the intracellular injection of activated cGMP-PK (cGMP-PK + 1 microM cGMP) greatly enhances the Ca2+ current of the identified ventral neurones seen in the absence of serotonin. These results indicate that cGMP-PK has a physiological role in the control of the membrane permeability of these neurones.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验