Suppr超能文献

cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones.

作者信息

Paupardin-Tritsch D, Hammond C, Gerschenfeld H M, Nairn A C, Greengard P

出版信息

Nature. 1986;323(6091):812-4. doi: 10.1038/323812a0.

Abstract

Protein phosphorylation catalysed by cyclic AMP-dependent, Ca2+/calmodulin-dependent and Ca2+/diacylglycerol-dependent protein kinases is important both in the modulation of synaptic transmission and in the regulation of neuronal membrane permeability (for reviews see refs 5-7). However, there has previously been no evidence for the involvement of cyclic GMP-dependent protein kinase (cGMP-PK) in the regulation of neuronal function. Serotonin induces an increase of Ca2+ current in a group of identified ventral neurones of the snail Helix aspersa. This effect is probably mediated by cGMP because it is mimicked by the intracellular injection of cGMP or the application of zaprinast, an inhibitor of cGMP-dependent phosphodiesterase. We have now found that the effect of either serotonin or zaprinast on the Ca2+ current is potentiated by the intracellular injection of cGMP-PK. Moreover, the intracellular injection of activated cGMP-PK (cGMP-PK + 1 microM cGMP) greatly enhances the Ca2+ current of the identified ventral neurones seen in the absence of serotonin. These results indicate that cGMP-PK has a physiological role in the control of the membrane permeability of these neurones.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验