文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过生物信息学分析鉴定 KIT/PDGFRA 野生型胃肠道间质瘤的关键基因及相关通路。

Identification of key genes and associated pathways in KIT/PDGFRA wild‑type gastrointestinal stromal tumors through bioinformatics analysis.

机构信息

Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, P.R. China.

Department of General Surgery, Lanzhou General Hospital of Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China.

出版信息

Mol Med Rep. 2018 Nov;18(5):4499-4515. doi: 10.3892/mmr.2018.9457. Epub 2018 Sep 5.


DOI:10.3892/mmr.2018.9457
PMID:30221743
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6172374/
Abstract

Gastrointestinal stromal tumors (GISTs) are the most common type of mesenchymal tumor in the gastrointestinal tract. The present study aimed to identify the potential candidate biomarkers that may be involved in the pathogenesis and progression of v‑kit Hardy‑Zuckerman 4 feline sarcoma viral oncogene homolog (KIT)/platelet‑derived growth factor receptor α (PDGFRA) wild‑type GISTs. A joint bioinformatics analysis was performed to identify the differentially expressed genes (DEGs) in wild‑type GIST samples compared with KIT/PDGFRA mutant GIST samples. Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs was conducted using Database for Annotation, Visualization and Integrated Discovery and KEGG Orthology‑Based Annotation System (KOBAS) online tools, respectively. Protein‑protein interaction (PPI) networks of the DEGs were constructed using Search Tool for the Retrieval of Interacting Genes online tool and Cytoscape, and divided into sub‑networks using the Molecular Complex Detection (MCODE) plug‑in. Furthermore, enrichment analysis of DEGs in the modules was analyzed with KOBAS. In total, 546 DEGs were identified, including 238 upregulated genes primarily enriched in 'cell adhesion', 'biological adhesion', 'cell‑cell signaling', 'PI3K‑Akt signaling pathway' and 'ECM‑receptor interaction', while the 308 downregulated genes were predominantly involved in 'inflammatory response', 'sterol metabolic process' and 'fatty acid metabolic process', 'small GTPase mediated signal transduction', 'cAMP signaling pathway' and 'proteoglycans in cancer'. A total of 25 hub genes were obtained and four modules were mined from the PPI network, and sub‑networks also revealed these genes were primarily involved in significant pathways, including 'PI3K‑Akt signaling pathway', 'proteoglycans in cancer', 'pathways in cancer', 'Rap1 signaling pathway', 'ECM‑receptor interaction', 'phospholipase D signaling pathway', 'ras signaling pathway' and 'cGMP‑PKG signaling pathway'. These results suggested that several key hub DEGs may serve as potential candidate biomarkers for wild‑type GISTs, including phosphatidylinositol‑4,5‑bisphosphate 3‑kinase, catalytic subunit γ, insulin like growth factor 1 receptor, hepatocyte growth factor, thrombospondin 1, Erb‑B2 receptor tyrosine kinase 2 and matrix metallopeptidase 2. However, further experiments are required to confirm these results.

摘要

胃肠道间质瘤(GISTs)是胃肠道最常见的间叶源性肿瘤。本研究旨在鉴定可能参与 v-kit Hardy-Zuckerman 4 猫肉瘤病毒致癌基因同源物(KIT)/血小板衍生生长因子受体α(PDGFRA)野生型 GIST 发病机制和进展的潜在候选生物标志物。采用联合生物信息学分析方法,鉴定与 KIT/PDGFRA 突变型 GIST 样本相比,野生型 GIST 样本中的差异表达基因(DEGs)。使用数据库注释、可视化和综合发现(DAVID)和京都基因与基因组百科全书(KEGG)基于同源物的注释系统(KOBAS)在线工具分别对 DEGs 的基因本体论(GO)功能和 KEGG 通路富集分析进行了分析。使用在线工具 Search Tool for the Retrieval of Interacting Genes 构建 DEGs 的蛋白质-蛋白质相互作用(PPI)网络,并使用 Cytoscape 将其划分为分子复合物检测(MCODE)插件的子网络。此外,使用 KOBAS 分析模块中 DEGs 的富集分析。共鉴定出 546 个 DEGs,其中 238 个上调基因主要富集在“细胞黏附”、“生物黏附”、“细胞-细胞信号转导”、“PI3K-Akt 信号通路”和“ECM-受体相互作用”,而 308 个下调基因主要参与“炎症反应”、“固醇代谢过程”和“脂肪酸代谢过程”、“小 GTPase 介导的信号转导”、“cAMP 信号通路”和“癌症中的蛋白聚糖”。共获得 25 个枢纽基因,并从 PPI 网络中挖掘出 4 个模块,子网络还揭示了这些基因主要参与了“PI3K-Akt 信号通路”、“癌症中的蛋白聚糖”、“癌症途径”、“Rap1 信号通路”、“ECM-受体相互作用”、“磷酸二酯酶 D 信号通路”、“ras 信号通路”和“cGMP-PKG 信号通路”等重要通路。这些结果表明,一些关键的枢纽 DEGs 可能成为野生型 GIST 的潜在候选生物标志物,包括磷脂酰肌醇-4,5-二磷酸 3-激酶、催化亚基γ、胰岛素样生长因子 1 受体、肝细胞生长因子、血小板反应蛋白 1、Erb-B2 受体酪氨酸激酶 2 和基质金属蛋白酶 2。然而,需要进一步的实验来验证这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/f7426323c994/MMR-18-05-4499-g08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/08099fddc4d3/MMR-18-05-4499-g00.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/e21951b2e5d5/MMR-18-05-4499-g01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/6d140e96862a/MMR-18-05-4499-g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/2d8e58fe606e/MMR-18-05-4499-g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/c8796715915c/MMR-18-05-4499-g04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/f41011d1db01/MMR-18-05-4499-g07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/f7426323c994/MMR-18-05-4499-g08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/08099fddc4d3/MMR-18-05-4499-g00.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/e21951b2e5d5/MMR-18-05-4499-g01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/6d140e96862a/MMR-18-05-4499-g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/2d8e58fe606e/MMR-18-05-4499-g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/c8796715915c/MMR-18-05-4499-g04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/f41011d1db01/MMR-18-05-4499-g07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/6172374/f7426323c994/MMR-18-05-4499-g08.jpg

相似文献

[1]
Identification of key genes and associated pathways in KIT/PDGFRA wild‑type gastrointestinal stromal tumors through bioinformatics analysis.

Mol Med Rep. 2018-9-5

[2]
Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.

Mol Med Rep. 2018-5-29

[3]
Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.

Mol Med Rep. 2018-8-21

[4]
Bioinformatics analysis to identify key genes and pathways influencing synovial inflammation in osteoarthritis.

Mol Med Rep. 2018-10-23

[5]
Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis.

Mol Med Rep. 2018-8-8

[6]
Integrative genomics analysis of hub genes and their relationship with prognosis and signaling pathways in esophageal squamous cell carcinoma.

Mol Med Rep. 2019-8-23

[7]
Bioinformatics analysis of fibroblasts exposed to TGF‑β at the early proliferation phase of wound repair.

Mol Med Rep. 2017-9-26

[8]
Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms.

Mol Med Rep. 2019-9-23

[9]
Identification of differentially expressed genes and enriched pathways in lung cancer using bioinformatics analysis.

Mol Med Rep. 2019-1-18

[10]
Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments.

Oncol Rep. 2018-11-1

引用本文的文献

[1]
c-Kit Receptors as a Therapeutic Target in Cancer: Current Insights.

Onco Targets Ther. 2023-9-27

[2]
Update on Molecular Genetics of Gastrointestinal Stromal Tumors.

Diagnostics (Basel). 2021-1-28

[3]
Gastrointestinal Stromal Tumors (GISTs): Novel Therapeutic Strategies with Immunotherapy and Small Molecules.

Int J Mol Sci. 2021-1-6

本文引用的文献

[1]
Correlation Between Thrombospondin-1 Expression in Non-cancer Tissue and Gastric Carcinogenesis.

Anticancer Res. 2017-7

[2]
FGF7/FGFR2 signal promotes invasion and migration in human gastric cancer through upregulation of thrombospondin-1.

Int J Oncol. 2017-5

[3]
A novel mechanism regulating human platelet activation by MMP-2-mediated PAR1 biased signaling.

Blood. 2016-12-29

[4]
The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible.

Nucleic Acids Res. 2017-1-4

[5]
Integrating miRNA and gene expression profiling analysis revealed regulatory networks in gastrointestinal stromal tumors.

Epigenomics. 2016-10

[6]
VHL-deficient renal cancer cells gain resistance to mitochondria-activating apoptosis inducers by activating AKT through the IGF1R-PI3K pathway.

Tumour Biol. 2016-10

[7]
Syndromic gastrointestinal stromal tumors.

Hered Cancer Clin Pract. 2016-7-19

[8]
Imaging of Gastrointestinal Stromal Tumors: From Diagnosis to Evaluation of Therapeutic Response.

Anticancer Res. 2016-6

[9]
Dietary fat overcomes the protective activity of thrombospondin-1 signaling in the Apc(Min/+) model of colon cancer.

Oncogenesis. 2016-5-30

[10]
Gastric cancer.

Lancet. 2016-5-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索