Suppr超能文献

一种新型智能手机应用程序评估老年住院患者谵妄注意力缺陷的诊断准确性的前瞻性队列研究方案。

Diagnostic test accuracy of a novel smartphone application for the assessment of attention deficits in delirium in older hospitalised patients: a prospective cohort study protocol.

机构信息

Edinburgh Delirium Research Group, University of Edinburgh, Edinburgh, UK.

Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.

出版信息

BMC Geriatr. 2018 Sep 17;18(1):217. doi: 10.1186/s12877-018-0901-5.

Abstract

BACKGROUND

Delirium is a common and serious clinical syndrome which is often missed in routine clinical care. The core cognitive feature is inattention. We developed a novel bedside neuropsychological test for assessing inattention in delirium implemented on a smartphone platform (DelApp). We aim to evaluate the diagnostic performance of the DelApp in a representative cohort of older hospitalised patients.

METHODS

This is a prospective study of older non-scheduled hospitalised patients (target n = 500, age ≥ 65), recruited from elderly care and acute orthopaedic wards. Exclusion criteria are: non-English speakers; severe vision or hearing impairment; photosensitive epilepsy. A structured reference standard delirium assessment based on DSM-5 criteria will be used, which includes a cognitive test battery administered by a trained assessor (Orientation-Memory-Concentration Test, Abbreviated Mental Test-10, Delirium Rating Severity Scale-Revised-98, digit span, months and days backwards, Vigilance A' test) and assessment of arousal (Observational Scale of Level of Arousal, Richmond Agitation Sedation Scale). Prior change in cognition will be documented using the Informant Questionnaire on Cognitive Decline in the Elderly. Patients will be categorized as delirium (with/without dementia), possible delirium, dementia, no cognitive impairment, or undetermined. A separate assessor (blinded to diagnosis and assessments) will administer the DelApp index test within 3 h of the reference standard assessment. The DelApp comprises assessment of arousal (score 0-4) and sustained attention (score 0-6), yielding a total score between 0 and 10 (higher score = better performance). Outcomes (length of stay, mortality and discharge location) will be collected at 12 weeks. We will evaluate a priori cutpoints derived from a previous case-control study. Measures of the accuracy of DelApp will include sensitivity, specificity, positive and negative predictive values, and area under the ROC curve. We plan repeat assessments on up to 4 occasions in a purposive subsample of 30 patients (15 delirium, 15 no delirium) to examine changes over time.

DISCUSSION

This study evaluates the diagnostic test accuracy of a novel smartphone test for delirium in a representative cohort of older hospitalised patients, including those with dementia. DelApp has the potential to be a convenient, objective method of improving delirium assessment for older people in acute care.

TRIAL REGISTRATION

Clinical trials.gov, NCT02590796 . Registered on 29 Oct 2015. Protocol version 5, dated 25 July 2016.

摘要

背景

谵妄是一种常见且严重的临床综合征,在常规临床护理中经常被忽视。其核心认知特征是注意力不集中。我们开发了一种新的床边神经心理学测试,用于评估智能手机平台上的谵妄患者的注意力(DelApp)。我们旨在评估该测试在代表性的老年住院患者队列中的诊断性能。

方法

这是一项前瞻性研究,纳入了来自老年护理和急性骨科病房的年龄在 65 岁及以上的非计划性住院老年患者(目标 n=500)。排除标准为:非英语使用者;严重视力或听力障碍;光敏性癫痫。将采用基于 DSM-5 标准的结构化参考标准进行谵妄评估,包括由经过培训的评估者进行的认知测试(定向-记忆-集中测试、简易精神状态测试-10、谵妄严重程度评定量表修订版-98、数字跨度、月份和日子倒背、警觉性 A'测试)和觉醒评估(观察性觉醒水平量表、里士满躁动镇静量表)。将使用老年认知障碍知情者问卷记录先前认知变化。患者将被归类为谵妄(伴/不伴痴呆)、可能的谵妄、痴呆、无认知障碍或未确定。一名单独的评估者(对诊断和评估均不知情)将在参考标准评估后 3 小时内进行 DelApp 索引测试。DelApp 包括觉醒评估(得分 0-4)和持续注意力评估(得分 0-6),总分在 0 到 10 之间(得分越高,表现越好)。将在 12 周时收集住院时间、死亡率和出院地点等结局。我们将评估来自先前病例对照研究的预先设定切点。DelApp 的准确性指标包括灵敏度、特异性、阳性和阴性预测值以及 ROC 曲线下面积。我们计划在一个有目的的 30 名患者(15 名谵妄患者,15 名非谵妄患者)亚组中进行多达 4 次重复评估,以检查随时间的变化。

讨论

本研究评估了一种新的智能手机测试在代表性的老年住院患者(包括痴呆患者)中用于诊断谵妄的诊断测试准确性。DelApp 有可能成为改善急性护理中老年人谵妄评估的一种便捷、客观的方法。

试验注册

Clinicaltrials.gov,NCT02590796。于 2015 年 10 月 29 日注册。方案版本 5,日期为 2016 年 7 月 25 日。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a12/6142423/c1081b4756c0/12877_2018_901_Fig1_HTML.jpg

相似文献

3
Development of a smartphone application for the objective detection of attentional deficits in delirium.
Int Psychogeriatr. 2015 Aug;27(8):1251-62. doi: 10.1017/S1041610215000186. Epub 2015 Mar 6.
5
The 4 'A's test for detecting delirium in acute medical patients: a diagnostic accuracy study.
Health Technol Assess. 2019 Aug;23(40):1-194. doi: 10.3310/hta23400.
7
Evaluating attention in delirium: A comparison of bedside tests of attention.
Geriatr Gerontol Int. 2016 Sep;16(9):1028-35. doi: 10.1111/ggi.12592. Epub 2015 Sep 29.

引用本文的文献

本文引用的文献

1
A Novel Computerized Test for Detecting and Monitoring Visual Attentional Deficits and Delirium in the ICU.
Crit Care Med. 2017 Jul;45(7):1224-1231. doi: 10.1097/CCM.0000000000002477.
2
Attention, vigilance and visuospatial function in hospitalized elderly medical patients: Relationship to neurocognitive diagnosis.
J Psychosom Res. 2016 Nov;90:84-90. doi: 10.1016/j.jpsychores.2016.09.011. Epub 2016 Sep 29.
3
The Diagnosis of Delirium Superimposed on Dementia: An Emerging Challenge.
J Am Med Dir Assoc. 2017 Jan;18(1):12-18. doi: 10.1016/j.jamda.2016.07.014. Epub 2016 Sep 16.
6
Development of a smartphone application for the objective detection of attentional deficits in delirium.
Int Psychogeriatr. 2015 Aug;27(8):1251-62. doi: 10.1017/S1041610215000186. Epub 2015 Mar 6.
7
Objective assessment of attention in delirium: a narrative review.
Int J Geriatr Psychiatry. 2014 Dec;29(12):1185-97. doi: 10.1002/gps.4131. Epub 2014 Apr 24.
8
Abnormal level of arousal as a predictor of delirium and inattention: an exploratory study.
Am J Geriatr Psychiatry. 2013 Dec;21(12):1244-53. doi: 10.1016/j.jagp.2013.05.003. Epub 2013 Sep 27.
10
Delirium in an adult acute hospital population: predictors, prevalence and detection.
BMJ Open. 2013 Jan 7;3(1):e001772. doi: 10.1136/bmjopen-2012-001772.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验