Suppr超能文献

染色质调控因子 Asxl1 缺失和 Nf1 杂合性缺失协同加速髓系恶性肿瘤。

Chromatin regulator Asxl1 loss and Nf1 haploinsufficiency cooperate to accelerate myeloid malignancy.

机构信息

Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA.

CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.

出版信息

J Clin Invest. 2018 Dec 3;128(12):5383-5398. doi: 10.1172/JCI121366. Epub 2018 Oct 29.

Abstract

ASXL1 is frequently mutated in myeloid malignancies and is known to co-occur with other gene mutations. However, the molecular mechanisms underlying the leukemogenesis associated with ASXL1 and cooperating mutations remain to be elucidated. Here, we report that Asxl1 loss cooperated with haploinsufficiency of Nf1, a negative regulator of the RAS signaling pathway, to accelerate the development of myeloid leukemia in mice. Loss of Asxl1 and Nf1 in hematopoietic stem and progenitor cells resulted in a gain-of-function transcriptional activation of multiple pathways such as MYC, NRAS, and BRD4 that are critical for leukemogenesis. The hyperactive MYC and BRD9 transcription programs were correlated with elevated H3K4 trimethylation at the promoter regions of genes involving these pathways. Furthermore, pharmacological inhibition of both the MAPK pathway and BET bromodomain prevented leukemia initiation and inhibited disease progression in Asxl1Δ/Δ Nf1Δ/Δ mice. Concomitant mutations of ASXL1 and RAS pathway genes were associated with aggressive progression of myeloid malignancies in patients. This study sheds light on the effect of cooperation between epigenetic alterations and signaling pathways on accelerating the progression of myeloid malignancies and provides a rational therapeutic strategy for the treatment of myeloid malignancies with ASXL1 and RAS pathway gene mutations.

摘要

ASXL1 频繁发生突变,与其他基因突变更共存,已知与髓系恶性肿瘤相关。然而,与 ASXL1 和合作突变相关的白血病发生的分子机制仍有待阐明。在这里,我们报告了 Asxl1 的缺失与 NF1 的杂合不足(RAS 信号通路的负调节剂)合作,加速了小鼠髓系白血病的发展。造血干细胞和祖细胞中 Asxl1 和 Nf1 的缺失导致多个通路(如 MYC、NRAS 和 BRD4)的功能获得性转录激活,这些通路对白血病发生至关重要。高活性的 MYC 和 BRD9 转录程序与涉及这些通路的基因启动子区域的 H3K4 三甲基化升高相关。此外,MAPK 通路和 BET 溴结构域的药理学抑制可防止 Asxl1Δ/Δ Nf1Δ/Δ 小鼠的白血病起始并抑制疾病进展。ASXL1 和 RAS 通路基因的同时突变与患者髓系恶性肿瘤的侵袭性进展相关。本研究阐明了表观遗传改变与信号通路之间的合作对加速髓系恶性肿瘤进展的影响,并为治疗具有 ASXL1 和 RAS 通路基因突变的髓系恶性肿瘤提供了合理的治疗策略。

相似文献

1
Chromatin regulator Asxl1 loss and Nf1 haploinsufficiency cooperate to accelerate myeloid malignancy.
J Clin Invest. 2018 Dec 3;128(12):5383-5398. doi: 10.1172/JCI121366. Epub 2018 Oct 29.
2
Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies.
Blood. 2018 Jan 18;131(3):328-341. doi: 10.1182/blood-2017-06-789669. Epub 2017 Nov 7.
3
Deregulation of tumor suppressive ASXL1-PTEN/AKT axis in myeloid malignancies.
J Mol Cell Biol. 2020 Sep 1;12(9):688-699. doi: 10.1093/jmcb/mjaa011.
4
HHEX promotes myeloid transformation in cooperation with mutant ASXL1.
Blood. 2020 Oct 1;136(14):1670-1684. doi: 10.1182/blood.2019004613.
5
Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation.
J Exp Med. 2018 Jun 4;215(6):1729-1747. doi: 10.1084/jem.20171151. Epub 2018 Apr 11.
7
Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis.
Nat Commun. 2018 Jul 16;9(1):2733. doi: 10.1038/s41467-018-05085-9.
8
Generation and Characterization of Induced Pluripotent Stem Cells Carrying An ASXL1 Mutation.
Stem Cell Rev Rep. 2024 Oct;20(7):1889-1901. doi: 10.1007/s12015-024-10737-z. Epub 2024 Jun 17.
9
RUNX1 mutations promote leukemogenesis of myeloid malignancies in ASXL1-mutated leukemia.
J Hematol Oncol. 2019 Oct 22;12(1):104. doi: 10.1186/s13045-019-0789-3.
10
Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo.
J Exp Med. 2013 Nov 18;210(12):2641-59. doi: 10.1084/jem.20131141. Epub 2013 Nov 11.

引用本文的文献

1
Cell-type-specific consequences of mosaic structural variants in hematopoietic stem and progenitor cells.
Nat Genet. 2024 Jun;56(6):1134-1146. doi: 10.1038/s41588-024-01754-2. Epub 2024 May 28.
4
Epigenetic regulation by ASXL1 in myeloid malignancies.
Int J Hematol. 2023 Jun;117(6):791-806. doi: 10.1007/s12185-023-03586-y. Epub 2023 Apr 16.
5
Role of ASXL1 in hematopoiesis and myeloid diseases.
Exp Hematol. 2022 Nov;115:14-19. doi: 10.1016/j.exphem.2022.09.003. Epub 2022 Sep 30.
7
ASXL1/2 mutations and myeloid malignancies.
J Hematol Oncol. 2022 Sep 6;15(1):127. doi: 10.1186/s13045-022-01336-x.
10
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia.
Cancers (Basel). 2021 Dec 8;13(24):6192. doi: 10.3390/cancers13246192.

本文引用的文献

1
Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation.
J Exp Med. 2018 Jun 4;215(6):1729-1747. doi: 10.1084/jem.20171151. Epub 2018 Apr 11.
2
Loss of ASXL1 in the bone marrow niche dysregulates hematopoietic stem and progenitor cell fates.
Cell Discov. 2018 Jan 23;4:4. doi: 10.1038/s41421-017-0004-z. eCollection 2018.
3
Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity.
Cancer Cell. 2018 Jan 8;33(1):44-59.e8. doi: 10.1016/j.ccell.2017.11.012. Epub 2017 Dec 21.
4
The usefulness of mutational data on prognosis of myelodysplastic syndromes: alone or incorporated into the IPSS-R?
Br J Haematol. 2018 Dec;183(5):815-819. doi: 10.1111/bjh.15036. Epub 2017 Nov 28.
5
Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies.
Blood. 2018 Jan 18;131(3):328-341. doi: 10.1182/blood-2017-06-789669. Epub 2017 Nov 7.
6
Loss of Asxl2 leads to myeloid malignancies in mice.
Nat Commun. 2017 Jun 8;8:15456. doi: 10.1038/ncomms15456.
8
GSA: Genome Sequence Archive<sup/>.
Genomics Proteomics Bioinformatics. 2017 Feb;15(1):14-18. doi: 10.1016/j.gpb.2017.01.001. Epub 2017 Feb 2.
9
ASXL1 interacts with the cohesin complex to maintain chromatid separation and gene expression for normal hematopoiesis.
Sci Adv. 2017 Jan 20;3(1):e1601602. doi: 10.1126/sciadv.1601602. eCollection 2017 Jan.
10
The BIG Data Center: from deposition to integration to translation.
Nucleic Acids Res. 2017 Jan 4;45(D1):D18-D24. doi: 10.1093/nar/gkw1060. Epub 2016 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验