Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen, 518060, China.
Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
BMC Genomics. 2018 Sep 19;19(1):691. doi: 10.1186/s12864-018-5068-0.
Molybdenum (Mo) is an essential micronutrient for almost all biological systems, which holds key positions in several enzymes involved in carbon, nitrogen and sulfur metabolism. In general, this transition metal needs to be coordinated to a unique pterin, thus forming a prosthetic group named molybdenum cofactor (Moco) at the catalytic sites of molybdoenzymes. The biochemical functions of many molybdoenzymes have been characterized; however, comprehensive analyses of the evolution of Mo metabolism and molybdoproteomes are quite limited.
In this study, we analyzed almost 5900 sequenced organisms to examine the occurrence of the Mo utilization trait at the levels of Mo transport system, Moco biosynthetic pathway and molybdoproteins in all three domains of life. A global map of Moco biosynthesis and molybdoproteins has been generated, which shows the most detailed understanding of Mo utilization in prokaryotes and eukaryotes so far. Our results revealed that most prokaryotes and all higher eukaryotes utilize Mo whereas many unicellular eukaryotes such as parasites and most yeasts lost the ability to use this metal. By characterizing the molybdoproteomes of all organisms, we found many new molybdoprotein-rich species, especially in bacteria. A variety of new domain fusions were detected for different molybdoprotein families, suggesting the presence of novel proteins that are functionally linked to molybdoproteins or Moco biosynthesis. Moreover, horizontal gene transfer event involving both the Moco biosynthetic pathway and molybdoproteins was identified. Finally, analysis of the relationship between environmental factors and Mo utilization showed new evolutionary trends of the Mo utilization trait.
Our data provide new insights into the evolutionary history of Mo utilization in nature.
钼(Mo)是几乎所有生物系统的必需微量元素,在参与碳、氮和硫代谢的几种酶中占据关键位置。一般来说,这种过渡金属需要与独特的蝶呤配位,从而在钼酶的催化部位形成称为钼辅因子(Moco)的 prosthetic group。许多钼酶的生化功能已经得到了表征;然而,钼代谢和钼蛋白组的全面进化分析相当有限。
在这项研究中,我们分析了近 5900 个测序生物体,以检查生命的三个领域中钼运输系统、Moco 生物合成途径和钼蛋白在 Mo 利用性状方面的发生情况。生成了 Moco 生物合成和钼蛋白的全球图谱,这是迄今为止对原核生物和真核生物 Mo 利用的最详细理解。我们的研究结果表明,大多数原核生物和所有高等真核生物都利用 Mo,而许多单细胞真核生物(如寄生虫和大多数酵母)丧失了利用这种金属的能力。通过对所有生物体的钼蛋白组进行表征,我们发现了许多新的富含钼蛋白的物种,特别是在细菌中。检测到不同钼蛋白家族的多种新型结构域融合,表明存在与钼蛋白或 Moco 生物合成功能相关的新型蛋白质。此外,还鉴定了涉及 Moco 生物合成途径和钼蛋白的水平基因转移事件。最后,对环境因素与 Mo 利用之间的关系进行分析,显示了 Mo 利用性状的新进化趋势。
我们的数据为 Mo 利用在自然界中的进化历史提供了新的见解。