Ployet Raphael, Feng Kai, Zhang Jin, Baxter Ivan, Glasgow David C, Andrews Hunter B, Rodriguez Miguel, Chen Jin-Gui, Tuskan Gerald A, Tschaplinski Timothy J, Weston David J, Martin Madhavi Z, Muchero Wellington
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.
Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.
Front Plant Sci. 2024 Nov 28;15:1450646. doi: 10.3389/fpls.2024.1450646. eCollection 2024.
The ionome represents elemental composition in plant tissues and can be an indicator of nutrient status as well as overall plant performance. Thus, identifying genetic determinants governing elemental uptake and storage is an important goal for breeding and engineering biomass feedstocks with improved performance. In this study, we coupled high-throughput ionome characterization of leaf tissues with high-resolution genome-wide association studies (GWAS) to uncover genetic loci that modulate ionomic composition in leaves of poplar (). Significant agreement was observed across the three ionomic profiling platforms tested: inductively coupled plasma-mass spectrometry (ICP-MS), neutron activation analysis (NAA) and laser-induced breakdown spectroscopy (LIBS). Relative quantification of 20 elements using ICP-MS across a population of 584 genotypes, revealed larger variation in micro-nutrients and trace elements content than for macro-nutrients across genotypes. The GWAS performed using a set of high-density (>8.2 million) single nucleotide polymorphisms, identified over 600 loci significantly associated with variations in these mineral elements, pointing to numerous uncharacterized candidate genes. A significant enrichment for genes related to ion homeostasis and transport was observed, including several members of the cation-proton antiporters (CPA) family and MATE efflux transporters, previously reported to be critical for plant growth and fitness in other species. Our results also included a polymorphic copy of the high-affinity molybdenum transporter MOT1 found directly associated to molybdenum content. For the first time in a perennial plant, our results provide evidence of genetic control of mineral content in a model tree species.
离子组代表植物组织中的元素组成,可作为营养状况以及植物整体表现的指标。因此,识别控制元素吸收和储存的遗传决定因素是培育和改造性能更佳的生物质原料的一个重要目标。在本研究中,我们将叶片组织的高通量离子组表征与高分辨率全基因组关联研究(GWAS)相结合,以揭示调控杨树叶片离子组组成的基因座。在测试的三个离子组分析平台(电感耦合等离子体质谱法(ICP-MS)、中子活化分析(NAA)和激光诱导击穿光谱法(LIBS))中观察到了显著的一致性。使用ICP-MS对584个基因型群体中的20种元素进行相对定量分析,结果显示,与宏量营养素相比,基因型间微量营养素和微量元素含量的变异更大。使用一组高密度(>820万个)单核苷酸多态性进行的GWAS鉴定出600多个与这些矿质元素变异显著相关的基因座,指向众多未表征的候选基因。观察到与离子稳态和转运相关的基因显著富集,包括阳离子-质子反向转运蛋白(CPA)家族和多药及有毒化合物排出转运蛋白(MATE)的几个成员,先前报道这些成员对其他物种的植物生长和适应性至关重要。我们的结果还包括一个与钼含量直接相关的高亲和力钼转运蛋白MOT1的多态性拷贝。在一种多年生植物中,我们的结果首次提供了模式树种中矿质含量受遗传控制的证据。