Suppr超能文献

Brugada 综合征功能缺失型 Nav1.5 通道可捕获心脏 Kir2.1/2.2 通道。

Brugada syndrome trafficking-defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels.

机构信息

Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain.

Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.

出版信息

JCI Insight. 2018 Sep 20;3(18). doi: 10.1172/jci.insight.96291.

Abstract

Cardiac Nav1.5 and Kir2.1-2.3 channels generate Na (INa) and inward rectifier K (IK1) currents, respectively. The functional INa and IK1 interplay is reinforced by the positive and reciprocal modulation between Nav15 and Kir2.1/2.2 channels to strengthen the control of ventricular excitability. Loss-of-function mutations in the SCN5A gene, which encodes Nav1.5 channels, underlie several inherited arrhythmogenic syndromes, including Brugada syndrome (BrS). We investigated whether the presence of BrS-associated mutations alters IK1 density concomitantly with INa density. Results obtained using mouse models of SCN5A haploinsufficiency, and the overexpression of native and mutated Nav1.5 channels in expression systems - rat ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) - demonstrated that endoplasmic reticulum (ER) trafficking-defective Nav1.5 channels significantly decreased IK1, since they did not positively modulate Kir2.1/2.2 channels. Moreover, Golgi trafficking-defective Nav1.5 mutants produced a dominant negative effect on Kir2.1/2.2 and thus an additional IK1 reduction. Moreover, ER trafficking-defective Nav1.5 channels can be partially rescued by Kir2.1/2.2 channels through an unconventional secretory route that involves Golgi reassembly stacking proteins (GRASPs). Therefore, cardiac excitability would be greatly affected in subjects harboring Nav1.5 mutations with Golgi trafficking defects, since these mutants can concomitantly trap Kir2.1/2.2 channels, thus unexpectedly decreasing IK1 in addition to INa.

摘要

心脏钠离子通道 Nav1.5 和内向整流钾通道 Kir2.1-2.3 分别产生钠电流 (INa) 和内向整流钾电流 (IK1)。Nav15 与 Kir2.1/2.2 通道之间的正向和相互调节加强了功能性 INa 和 IK1 的相互作用,从而增强了对心室兴奋性的控制。编码 Nav1.5 通道的 SCN5A 基因突变是几种遗传性心律失常综合征(包括 Brugada 综合征,BrS)的基础。我们研究了 BrS 相关突变是否会同时改变 IK1 密度和 INa 密度。通过 SCN5A 杂合子不足的小鼠模型、表达系统中天然和突变 Nav1.5 通道的过表达(大鼠心室肌细胞和人诱导多能干细胞衍生的心肌细胞,hiPSC-CMs)获得的结果表明,内质网(ER)转运缺陷型 Nav1.5 通道显著降低了 IK1,因为它们没有正向调节 Kir2.1/2.2 通道。此外,高尔基体转运缺陷型 Nav1.5 突变体对 Kir2.1/2.2 产生显性负效应,从而导致 IK1 进一步减少。此外,ER 转运缺陷型 Nav1.5 通道可以通过涉及高尔基体重组堆叠蛋白(GRASPs)的非常规分泌途径,部分被 Kir2.1/2.2 通道挽救。因此,在存在高尔基体转运缺陷型 Nav1.5 突变的个体中,心脏兴奋性会受到极大影响,因为这些突变体可以同时捕获 Kir2.1/2.2 通道,从而意外地除了 INa 之外还降低了 IK1。

相似文献

1
Brugada syndrome trafficking-defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels.
JCI Insight. 2018 Sep 20;3(18). doi: 10.1172/jci.insight.96291.
2
Cardiac Kir2.1 and Na1.5 Channels Traffic Together to the Sarcolemma to Control Excitability.
Circ Res. 2018 May 25;122(11):1501-1516. doi: 10.1161/CIRCRESAHA.117.311872. Epub 2018 Mar 7.
3
Nav1.5 N-terminal domain binding to α1-syntrophin increases membrane density of human Kir2.1, Kir2.2 and Nav1.5 channels.
Cardiovasc Res. 2016 May 15;110(2):279-90. doi: 10.1093/cvr/cvw009. Epub 2016 Jan 19.
4
Kir2.1-Na1.5 channelosome and its role in arrhythmias in inheritable cardiac diseases.
Heart Rhythm. 2024 May;21(5):630-646. doi: 10.1016/j.hrthm.2024.01.017. Epub 2024 Jan 18.
6
Loss of sodium current caused by a Brugada syndrome-associated variant is determined by patient-specific genetic background.
Heart Rhythm. 2024 Mar;21(3):331-339. doi: 10.1016/j.hrthm.2023.11.019. Epub 2023 Nov 24.
7
Azithromycin Causes a Novel Proarrhythmic Syndrome.
Circ Arrhythm Electrophysiol. 2017 Apr;10(4). doi: 10.1161/CIRCEP.115.003560.
8
Protein assemblies of sodium and inward rectifier potassium channels control cardiac excitability and arrhythmogenesis.
Am J Physiol Heart Circ Physiol. 2015 Jun 15;308(12):H1463-73. doi: 10.1152/ajpheart.00176.2015. Epub 2015 Apr 10.
9
Potassium channels in the Cx43 gap junction perinexus modulate ephaptic coupling: an experimental and modeling study.
Pflugers Arch. 2016 Oct;468(10):1651-61. doi: 10.1007/s00424-016-1861-2. Epub 2016 Aug 11.

引用本文的文献

2
Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome.
Cell Discov. 2025 Jan 10;11(1):3. doi: 10.1038/s41421-024-00738-0.
3
The Role of Human-Induced Pluripotent Stem Cells in Studying Cardiac Channelopathies.
Int J Mol Sci. 2024 Nov 8;25(22):12034. doi: 10.3390/ijms252212034.
4
Stem cell models of inherited arrhythmias.
Nat Cardiovasc Res. 2024 Apr;3(4):420-430. doi: 10.1038/s44161-024-00451-x. Epub 2024 Mar 21.
5
Kir2.1 dysfunction at the sarcolemma and the sarcoplasmic reticulum causes arrhythmias in a mouse model of Andersen-Tawil syndrome type 1.
Nat Cardiovasc Res. 2022 Oct;1(10):900-917. doi: 10.1038/s44161-022-00145-2. Epub 2022 Oct 17.
7
The network of cardiac K2.1: its function, cellular regulation, electrical signaling, diseases and new drug avenues.
Naunyn Schmiedebergs Arch Pharmacol. 2024 Sep;397(9):6369-6389. doi: 10.1007/s00210-024-03116-5. Epub 2024 Apr 29.
8
Extracellular Kir2.1 Mutant Upsets Kir2.1-PIP Bonds and Is Arrhythmogenic in Andersen-Tawil Syndrome.
Circ Res. 2024 Apr 12;134(8):e52-e71. doi: 10.1161/CIRCRESAHA.123.323895. Epub 2024 Mar 18.
9
models of the macromolecular Na1.5-K2.1 complex.
Front Physiol. 2024 Feb 26;15:1362964. doi: 10.3389/fphys.2024.1362964. eCollection 2024.

本文引用的文献

1
Unconventional secretion of transmembrane proteins.
Semin Cell Dev Biol. 2018 Nov;83:59-66. doi: 10.1016/j.semcdb.2018.03.016. Epub 2018 Mar 28.
2
Cardiac Kir2.1 and Na1.5 Channels Traffic Together to the Sarcolemma to Control Excitability.
Circ Res. 2018 May 25;122(11):1501-1516. doi: 10.1161/CIRCRESAHA.117.311872. Epub 2018 Mar 7.
3
Kir2.1-Nav1.5 Channel Complexes Are Differently Regulated than Kir2.1 and Nav1.5 Channels Alone.
Front Physiol. 2017 Nov 14;8:903. doi: 10.3389/fphys.2017.00903. eCollection 2017.
5
Tbx20 controls the expression of the KCNH2 gene and of hERG channels.
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):E416-E425. doi: 10.1073/pnas.1612383114. Epub 2017 Jan 3.
6
Risk stratification of ventricular fibrillation in Brugada syndrome using noninvasive scoring methods.
Heart Rhythm. 2016 Oct;13(10):1947-54. doi: 10.1016/j.hrthm.2016.07.009. Epub 2016 Jul 14.
7
Tpeak-Tend interval and Tpeak-Tend/QT ratio in patients with Brugada syndrome.
Europace. 2016 Dec;18(12):1866-1872. doi: 10.1093/europace/euw033. Epub 2016 Mar 3.
8
Negative-dominance phenomenon with genetic variants of the cardiac sodium channel Nav1.5.
Biochim Biophys Acta. 2016 Jul;1863(7 Pt B):1791-8. doi: 10.1016/j.bbamcr.2016.02.013. Epub 2016 Feb 22.
9
Nav1.5 N-terminal domain binding to α1-syntrophin increases membrane density of human Kir2.1, Kir2.2 and Nav1.5 channels.
Cardiovasc Res. 2016 May 15;110(2):279-90. doi: 10.1093/cvr/cvw009. Epub 2016 Jan 19.
10
The cardiac sodium channel gene SCN5A and its gene product NaV1.5: Role in physiology and pathophysiology.
Gene. 2015 Dec 1;573(2):177-87. doi: 10.1016/j.gene.2015.08.062. Epub 2015 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验