Apollo Technology Co., Ltd., Kaohsiung City, 80248, Taiwan.
Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan.
Environ Sci Pollut Res Int. 2019 Nov;26(33):34027-34038. doi: 10.1007/s11356-018-3099-3. Epub 2018 Sep 19.
The objectives of this study were to (1) conduct laboratory bench and column experiments to determine the oxidation kinetics and optimal operational parameters for trichloroethene (TCE)-contaminated groundwater remediation using potassium permanganate (KMnO) as oxidant and (2) to conduct a pilot-scale study to assess the efficiency of TCE remediation by KMnO oxidation. The controlling factors in laboratory studies included soil oxidant demand (SOD), molar ratios of KMnO to TCE, KMnO decay rate, and molar ratios of NaHPO to KMnO for manganese dioxide (MnO) production control. Results show that a significant amount of KMnO was depleted when it was added in a soil/water system due to the existence of natural soil organic matters. The presence of natural organic material in soils can exert a significant oxidant demand thereby reducing the amount of KMnO available for the destruction of TCE as well as the overall oxidation rate of TCE. Supplement of higher concentrations of KMnO is required in the soil systems with high SOD values. Higher KMnO application resulted in more significant H and subsequent pH drop. The addition of NaHPO could minimize the amount of produced MnO particles and prevent the clogging of soil pores, and TCE oxidation efficiency would not be affected by NaHPO. To obtain a complete TCE removal, the amount of KMnO used to oxidize TCE needs to be higher than the theoretical molar ratio of KMnO to TCE based on the stoichiometry equation. Relatively lower oxidation rates are obtained with lower initial TCE concentrations. The half-life of TCE decreased with increased KMnO concentrations. Results from the pilot-scale study indicate that a significant KMnO decay occurs after the injection due to the reaction of KMnO with soil organic matters, and thus, the amount of KMnO, which could be transported from the injection point to the downgradient area, would be low. The effective influence zone of the KMnO oxidation was limited to the KMnO injection area (within a 3-m radius zone). Migration of KMnO to farther downgradient area was limited due to the reaction of KMnO to natural organic matters. To retain a higher TCE removal efficiency, continuous supplement of high concentrations of KMnO is required. The findings would be useful in designing an in situ field-scale ISCO system for TCE-contaminated groundwater remediation using KMnO as the oxidant.
(1) 通过实验室柱实验,确定以高锰酸钾(KMnO)作为氧化剂修复三氯乙烯(TCE)污染地下水的氧化动力学和最佳操作参数;(2) 通过中试研究评估 KMnO 氧化修复 TCE 的效率。实验室研究的控制因素包括土壤氧化剂需求(SOD)、KMnO 与 TCE 的摩尔比、KMnO 的衰减率以及用于控制二氧化锰(MnO)生成的 NaHPO 与 KMnO 的摩尔比。结果表明,由于天然土壤有机质的存在,KMnO 在土壤/水体系中添加时会大量消耗。土壤中天然有机物质的存在会产生大量的氧化剂需求,从而减少 KMnO 的量,使其无法破坏 TCE,也会降低 TCE 的整体氧化速率。在 SOD 值较高的土壤系统中需要补充更高浓度的 KMnO。较高的 KMnO 应用会导致更多的 H 和随后的 pH 值下降。添加 NaHPO 可以最小化生成的 MnO 颗粒的量,并防止土壤孔隙堵塞,且 NaHPO 不会影响 TCE 的氧化效率。为了完全去除 TCE,需要使用的 KMnO 量要高于基于化学计量方程的 KMnO 与 TCE 的理论摩尔比。初始 TCE 浓度较低时,氧化速率相对较低。TCE 的半衰期随着 KMnO 浓度的增加而降低。中试研究结果表明,由于 KMnO 与土壤有机质的反应,在注入后 KMnO 会发生显著衰减,因此,能够从注入点运移到下游区域的 KMnO 量会较低。KMnO 氧化的有效影响区域仅限于 KMnO 注入区域(在 3 米半径区域内)。由于 KMnO 与天然有机质的反应,KMnO 向更远的下游区域迁移受到限制。为了保持较高的 TCE 去除效率,需要连续补充高浓度的 KMnO。这些发现将有助于设计使用 KMnO 作为氧化剂原位现场规模 ISCO 系统修复 TCE 污染地下水。