Lindblad Sofia, Mehmeti Krenare, Veiga Alberte X, Nekoueishahraki Bijan, Gräfenstein Jürgen, Erdélyi Máté
Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden.
Department of Chemistry - BMC , Uppsala University , SE-751 23 Uppsala , Sweden.
J Am Chem Soc. 2018 Oct 17;140(41):13503-13513. doi: 10.1021/jacs.8b09467. Epub 2018 Oct 4.
Halogen bonding is the noncovalent interaction of halogen atoms in which they act as electron acceptors. Whereas three-center hydrogen bond complexes, [D···H···D] where D is an electron donor, exist in solution as rapidly equilibrating asymmetric species, the analogous halogen bonds, [D···X···D], have been observed so far only to adopt static and symmetric geometries. Herein, we investigate whether halogen bond asymmetry, i.e., a [D-X···D] bond geometry, in which one of the D-X bonds is shorter and stronger, could be induced by modulation of electronic or steric factors. We have also attempted to convert a static three-center halogen bond complex into a mixture of rapidly exchanging asymmetric isomers, [D···X-D] ⇄ [D-X···D], corresponding to the preferred form of the analogous hydrogen bonded complexes. Using N NMR, IPE NMR, and DFT, we prove that a static, asymmetric geometry, [D-X···D], is obtained upon desymmetrization of the electron density of a complex. We demonstrate computationally that conversion into a dynamic mixture of asymmetric geometries, [D···X-D] ⇄ [D-X···D], is achievable upon increasing the donor-donor distance. However, due to the high energetic gain upon formation of the three-center-four-electron halogen bond, the assessed complex strongly prefers to form a dimer with two static and symmetric three-center halogen bonds over a dynamic and asymmetric halogen bonded form. Our observations indicate a vastly different preference in the secondary bonding of H and X. Understanding the consequences of electronic and steric influences on the strength and geometry of the three-center halogen bond provides useful knowledge on chemical bonding and for the development of improved halonium transfer agents.
卤键是卤原子作为电子受体的非共价相互作用。虽然三中心氢键复合物[D···H···D](其中D是电子供体)在溶液中以快速平衡的不对称物种形式存在,但到目前为止,类似的卤键[D···X···D]仅观察到呈现静态和对称的几何结构。在此,我们研究卤键不对称性,即[D-X···D]键几何结构(其中一个D-X键更短且更强)是否可通过电子或空间因素的调节来诱导。我们还试图将静态的三中心卤键复合物转化为快速交换的不对称异构体混合物[D···X-D] ⇄ [D-X···D],这对应于类似氢键复合物的优选形式。使用核磁共振(N NMR)、碘核四重极共振(IPE NMR)和密度泛函理论(DFT),我们证明复合物电子密度去对称化后可得到静态的不对称几何结构[D-X···D]。我们通过计算证明,增加供体-供体距离可实现向不对称几何结构动态混合物[D···X-D] ⇄ [D-X···D]的转化。然而,由于形成三中心四电子卤键时能量增益很高,所评估的复合物强烈倾向于形成具有两个静态和对称三中心卤键的二聚体,而不是动态和不对称的卤键形式。我们的观察结果表明H和X在二级键合方面有截然不同的偏好。理解电子和空间影响对三中心卤键强度和几何结构的后果,为化学键合以及开发改进的卤鎓转移剂提供了有用的知识。