Suppr超能文献

机器学习在预测非裔美国黑人与白人初产妇自发性早产中的应用。

Application of machine-learning to predict early spontaneous preterm birth among nulliparous non-Hispanic black and white women.

机构信息

March of Dimes Prematurity Center, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA.

March of Dimes Prematurity Center, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA.

出版信息

Ann Epidemiol. 2018 Nov;28(11):783-789.e1. doi: 10.1016/j.annepidem.2018.08.008. Epub 2018 Aug 24.

Abstract

PURPOSE

Spontaneous preterm birth is a leading cause of perinatal mortality in the United States, occurring disproportionately among non-Hispanic black women compared to other race-ethnicities. Clinicians lack tools to identify first-time mothers at risk for spontaneous preterm birth. This study assessed prediction of early (<32 weeks) spontaneous preterm birth among non-Hispanic black and white women by applying state-of-the-art machine-learning to multilevel data from a large birth cohort.

METHODS

Data from birth certificate and hospital discharge records for 336,214 singleton births to nulliparous women in California from 2007 to 2011 were used in cross-validated regressions, with multiple imputation for missing covariate data. Residential census tract information was overlaid for 281,733 births. Prediction was assessed with areas under the receiver operator characteristic curves (AUCs).

RESULTS

Cross-validated AUCs were low (0.62 [min = 0.60, max = 0.63] for non-Hispanic blacks and 0.63 [min = 0.61, max = 0.65] for non-Hispanic whites). Combining racial-ethnic groups improved prediction (cross-validated AUC = 0.67 [min = 0.65, max = 0.68]), approaching what others have achieved using biomarkers. Census tract-level information did not improve prediction.

CONCLUSIONS

The resolution of administrative data was inadequate to precisely predict individual risk for early spontaneous preterm birth despite the use of advanced statistical methods.

摘要

目的

自发性早产是美国围产期死亡的主要原因,与其他种族-族裔相比,非西班牙裔黑人女性的自发性早产发生率不成比例。临床医生缺乏识别首次自发性早产风险的工具。本研究通过将最先进的机器学习应用于大型出生队列的多层次数据,评估了非西班牙裔黑人和白人初产妇发生早期(<32 周)自发性早产的预测能力。

方法

使用加利福尼亚州 2007 年至 2011 年间 336214 名初产妇的出生证明和医院出院记录进行交叉验证回归分析,对缺失协变量数据进行多次插补。为 281733 次分娩覆盖了居民普查区信息。使用接受者操作特征曲线下面积(AUC)评估预测能力。

结果

交叉验证的 AUC 较低(非西班牙裔黑人为 0.62[最小值=0.60,最大值=0.63],非西班牙裔白人为 0.63[最小值=0.61,最大值=0.65])。将种族-族裔群体结合起来可以提高预测能力(交叉验证 AUC=0.67[最小值=0.65,最大值=0.68]),接近其他人使用生物标志物所取得的效果。普查区层面的信息并不能提高预测能力。

结论

尽管使用了先进的统计方法,但行政数据的分辨率不足以准确预测个体发生早期自发性早产的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验