Suppr超能文献

采用机器学习方法的早产临床和牙科预测因素:MOHEPI 研究。

Clinical and dental predictors of preterm birth using machine learning methods: the MOHEPI study.

机构信息

Department of Periodontology, Korea University Anam Hospital, Seoul, Republic of Korea.

Center for Artificial Intelligence, Korea University College of Medicine, Seoul, Republic of Korea.

出版信息

Sci Rep. 2024 Oct 21;14(1):24664. doi: 10.1038/s41598-024-75684-8.

Abstract

Preterm birth (PTB) is one of the most common and serious complications of pregnancy, leading to mortality and severe morbidities that can impact lifelong health. PTB could be associated with various maternal medical condition and dental status including periodontitis. The purpose of this study was to identify major predictors of PTB among clinical and dental variables using machine learning methods. Prospective cohort data were obtained from 60 women who delivered singleton births via cesarean section (30 PTB, 30 full-term birth [FTB]). Dependent variables were PTB and spontaneous PTB (SPTB). 15 independent variables (10 clinical and 5 dental factors) were selected for inclusion in the machine learning analysis. Random forest (RF) variable importance was used to identify the major predictors of PTB and SPTB. Shapley additive explanation (SHAP) values were calculated to analyze the directions of the associations between the predictors and PTB/SPTB. Major predictors of PTB identified by RF variable importance included pre-pregnancy body mass index (BMI), modified gingival index (MGI), preeclampsia, decayed missing filled teeth (DMFT) index, and maternal age as in top five rankings. SHAP values revealed positive correlations between PTB/SPTB and its major predictors such as premature rupture of the membranes, pre-pregnancy BMI, maternal age, and MGI. The positive correlations between these predictors and PTB emphasize the need for integrated medical and dental care during pregnancy. Future research should focus on validating these predictors in larger populations and exploring interventions to mitigate these risk factors.

摘要

早产 (PTB) 是妊娠中最常见和最严重的并发症之一,可导致死亡率和严重的发病率,从而影响终生健康。PTB 可能与各种母体医疗状况和口腔状况有关,包括牙周炎。本研究的目的是使用机器学习方法确定临床和牙科变量中与 PTB 相关的主要预测因素。前瞻性队列数据来自 60 名通过剖宫产分娩单胎的妇女(30 例 PTB,30 例足月分娩 [FTB])。因变量为 PTB 和自发性 PTB(SPTB)。选择了 15 个独立变量(10 个临床和 5 个牙科因素)纳入机器学习分析。随机森林(RF)变量重要性用于识别 PTB 和 SPTB 的主要预测因素。计算 Shapley 加法解释(SHAP)值以分析预测因素与 PTB/SPTB 之间的关联方向。RF 变量重要性确定的 PTB 主要预测因素包括孕前体重指数(BMI)、改良牙龈指数(MGI)、子痫前期、龋齿缺失补牙(DMFT)指数和母亲年龄,排名前五。SHAP 值显示 PTB/SPTB 与其主要预测因素之间存在正相关,如胎膜早破、孕前 BMI、母亲年龄和 MGI。这些预测因素与 PTB 之间的正相关强调了在怀孕期间需要进行综合医疗和牙科护理。未来的研究应重点在更大的人群中验证这些预测因素,并探索减轻这些危险因素的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e2f/11494142/f36ac30b0914/41598_2024_75684_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验