Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):E9514-E9522. doi: 10.1073/pnas.1803779115. Epub 2018 Sep 20.
Bacterial plant pathogens cause significant crop damage worldwide. They invade plant cells by producing a variety of virulence factors, including small-molecule toxins and phytohormone mimics. Virulence of the model pathogen pv. DC3000 () is regulated in part by the sigma factor HrpL. Our study of the HrpL regulon identified an uncharacterized, three-gene operon in that is controlled by HrpL and related to the -associated systemic virulence () operon. Here, we demonstrate that the operon contributes to the virulence of on and suppresses bacteria-induced immune responses. We show that the -encoded enzymes in synthesize a small molecule, phevamine A. This molecule consists of l-phenylalanine, l-valine, and a modified spermidine, and is different from known small molecules produced by phytopathogens. We show that phevamine A suppresses a potentiation effect of spermidine and l-arginine on the reactive oxygen species burst generated upon recognition of bacterial flagellin. The operon is found in the genomes of divergent bacterial genera, including ∼37% of genomes, suggesting that phevamine A is a widely distributed virulence factor in phytopathogens. Our work identifies a small-molecule virulence factor and reveals a mechanism by which bacterial pathogens overcome plant defense. This work highlights the power of omics approaches in identifying important small molecules in bacteria-host interactions.
植物病原菌在全球范围内造成了重大的作物损失。它们通过产生多种毒力因子,包括小分子毒素和植物激素模拟物,来入侵植物细胞。模式病原菌 pv. DC3000 () 的毒力部分受 sigma 因子 HrpL 调控。我们对 HrpL 调控子的研究在 中鉴定出一个未被描述的、由三个基因组成的操纵子,该操纵子受 HrpL 和相关的 -associated systemic virulence () 操纵子控制。在这里,我们证明了 操纵子有助于 在 上的毒力,并抑制了细菌诱导的免疫反应。我们表明, 编码的酶在 中合成一种小分子phevamine A。这种分子由 l-苯丙氨酸、l-缬氨酸和修饰的亚精胺组成,与植物病原菌产生的已知小分子不同。我们表明,phevamine A 抑制了多胺和 l-精氨酸对细菌鞭毛蛋白识别后产生的活性氧爆发的增效作用。 操纵子存在于不同细菌属的基因组中,包括约 37%的 基因组,这表明 phevamine A 是植物病原菌中广泛分布的毒力因子。我们的工作确定了一种小分子毒力因子,并揭示了细菌病原体克服植物防御的机制。这项工作强调了组学方法在鉴定细菌-宿主相互作用中重要小分子的作用。