Bazhanov Dmitry I, Sivkov Ilia N, Stepanyuk Valeri S
Max Planck Institute of Microstructure Physics, Halle, 06120, Germany.
Faculty of Physics, Moscow State University, GSP-1, Lenin Hills, 119991, Moscow, Russia.
Sci Rep. 2018 Sep 20;8(1):14118. doi: 10.1038/s41598-018-32145-3.
Several recent experiments have shown that long-range exchange interactions can determine collective magnetic ground states of nanostructures in bulk and on surfaces. The ability to generate and control entanglement in a system with long-range interaction will be of great importance for future quantum technology. An important step forward to reach this goal is the creation of entangled states for spins of distant magnetic atoms. Herein, the generation of long-distance entanglement between remote spins at large separations in bulk and on surface is studied theoretically, based on a quantum spin Hamiltonian and time-dependent Schrödinger equation for experimentally realized conditions. We demonstrate that long-distance entanglement can be generated between remote spins by using an appropriate quantum spin chain (a quantum mediator), composed by sets of antiferromagnetically coupled spin dimers. Ground state properties and quantum spin dynamics of entangled atoms are studied. We demonstrate that one can increase or suppress entanglement by adding a single spin in the mediator. The obtained result is explained by monogamy property of entanglement distribution inside a quantum spin system. We present a novel approach for non-local sensing of remote magnetic adatoms via spin entanglement.
最近的几项实验表明,长程交换相互作用可以决定块体和表面纳米结构的集体磁基态。在具有长程相互作用的系统中产生和控制纠缠的能力对于未来的量子技术将具有重要意义。实现这一目标的重要一步是为远距离磁性原子的自旋创建纠缠态。在此,基于量子自旋哈密顿量和针对实验实现条件的含时薛定谔方程,从理论上研究了块体和表面上大间距远程自旋之间长距离纠缠的产生。我们证明,通过使用由反铁磁耦合自旋二聚体集合组成的适当量子自旋链(量子中介体),可以在远程自旋之间产生长距离纠缠。研究了纠缠原子的基态性质和量子自旋动力学。我们证明,可以通过在中介体中添加单个自旋来增加或抑制纠缠。通过量子自旋系统内纠缠分布的一夫一妻制性质来解释所获得的结果。我们提出了一种通过自旋纠缠对远程磁性吸附原子进行非局部传感的新方法。